
DRL-based Trajectory Planning and Sensor Task
Scheduling for Edge Robotics

Sirine Bouhoula∗, Marios Avgeris∗, Aris Leivadeas∗, Ioannis Lambadaris†
∗ Department of Software and IT Engineering, École de technologie supérieure (ÉTS), Montréal, Canada

†Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
sirine.bouhoula.1@ens.etsmtl.ca, marios.avgeris@etsmtl.ca, aris.leivadeas@etsmtl.ca, ioannis@sce.carleton.ca

Abstract—Mobile Edge Computing (MEC) and Edge Robotics
have recently emerged as transformative technologies, revolu-
tionizing industries by enabling real-time processing, decision-
making, and automation at the network edge. However, the
dynamicity induced by the system’s conditions and specifically
the mobility poses a challenge for optimally deciding where to
execute a given computational task. As a response, we develop an
intelligent algorithm for dynamic sensor task offloading tailored
to the unique requirements of MEC-enabled robotic environ-
ments. Specifically, we first introduce the environmental dynam-
ics including a sensor task’s end-to-end delay and the robots’
mobility and energy consumption and provide mathematical
formulations to model these dynamics. Then, we mathematically
formulate the optimization problem and its MDP counterpart
and we propose a Deep Reinforcement Learning (DRL)-based
computational offloading strategy to jointly optimize Quality of
Service (QoS) and energy consumption through robot trajectory
planning and fine-grained task allocation. Through hand-picked
representative simulation scenarios, we demonstrate the superi-
ority of our proposed mechanism in enhancing the overall system
performance, specifically in optimizing task execution, reducing
energy consumption, and mitigating transmission delays, com-
pared to various baseline approaches.

Index Terms—Mobile Edge Computing, Edge Robotics, Task
Offloading, Trajectory Planning, Deep Reinforcement Learning.

I. INTRODUCTION

In the dawn of 5G and beyond networking, Mobile Edge
Computing (MEC) has emerged as a transformative paradigm,
empowering real-time processing and decision-making at
the network edge. This shift from traditional Cloud-centric
approaches offers significant advantages, including ultra-low
latency, high bandwidth, and improved reliability [1]. Build-
ing upon this foundation, in the realm of the Internet of
Things (IoT), edge robotics integrates robotic systems and
sensors with the MEC infrastructure. Following the paradigm
of computational task offloading, this powerful combina-
tion enables robots to execute complex tasks by leveraging
additional computational and networking resources in their
proximity. Edge robotic systems hold great potential across
various domains, including industrial automation, logistics,
and search-and-rescue operations [2].

This work has been supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC), Grant no. RGPIN-2019-05250

However, environments like these pose significant chal-
lenges for MEC-enabled edge robotic systems due to their
inherent dynamicity. Mobility, for instance, can impact the
overall system performance. As robots navigate within an
environment, the distance between them, the sensors they are
associated with, and the targeted edge execution platforms
can fluctuate, directly affecting data transmission delays and
the overall Quality of Service (QoS). Furthermore, additional
delays during task execution may arise due to factors such as
network bandwidth and resource over-utilization. Thus, mini-
mizing these delays is crucial for time-sensitive edge robotic
assisted applications. Additionally, since robots operate on
constrained resources and battery capacity, careful decision-
making regarding local processing versus remote offloading
is necessary to balance energy efficiency with QoS [3].

The problem of computational offloading in general falls
into the category of NP-hard problems, thus approximate
solutions have been suggested in the literature; specifically,
Deep Reinforcement Learning (DRL)-based techniques have
shown promising potential to delivering near-optimal results
in highly dynamic environments, due to their model-free, scal-
able and generalizable operation [4]. As a response, to address
the aforementioned challenges and harness the potential of
edge robotic systems, we thus propose a DRL-based sensor
computational offloading strategy to jointly optimize QoS and
energy consumption through robot trajectory planning and
fine-grained task allocation. Our contribution is threefold:

• We develop of a comprehensive mathematical model that
effectively captures the dynamic aspects of the system
like mobility patterns, transmission and execution delays,
and energy consumption dynamics. We then formally
formulate the corresponding optimization problem.

• Since this problem is challenging to solve in real time,
we formulate its Markov Decision Process counterpart
and propose a novel DRL-based online solution. Specif-
ically, we design a mechanism where robots are able to
jointly and dynamically i) determine whether to perform
tasks locally or offload them to other robots in the vicin-
ity, in a Device-to-Device (D2D) fashion, and ii) plan
their trajectory based on their task execution strategy and
the distance from associated sensors.

• Through extensive evaluation we benchmark the per-

formance of our solution against several baseline algo-
rithms, demonstrating its superiority in terms of task
execution, energy consumption, and overall performance.

The remainder of this paper is structured as follows: Sec-
tion II provides a review of the related works. Section III
details the system model, the problem formulation and the
MDP components. Section IV proposes our DRL-based task
offloading strategy for edge robotics, while Section V presents
the simulation results. Finally, Section VI concludes the paper.

II. RELATED WORKS

Various approaches have been proposed to optimize com-
putation offloading strategies in the context of MEC [5]. Many
of these solve a snapshot of the problem by considering
static mobile devices static during the optimization horizon.
For example, Jiang et al. [6] presented a delay-aware energy
minimization D2D offloading scheme based on dynamic
programming, emphasizing the balance between energy con-
sumption and delay constraints. While effective in addressing
energy concerns, this approach lacks adaptability in mobile
scenarios due to its limited consideration of dynamic mobility
patterns. Wang et al. [7] focused on energy and delay mini-
mization in D2D-assisted MEC systems. Although effective in
reducing energy consumption and delay for partial offloading
scenarios, the approach may require adaptations for varying
network conditions and mobility. Li et al. [8] investigated
energy-efficient D2D-assisted computation offloading in MEC
systems with energy harvesting capabilities. While shown
to prolong mission duration, this design overlooks dynamic
mobility patterns. Lastly, Lalwani et al. [9] optimized resource
allocation for crowd-cloud assisted D2D computation offload-
ing, offering reduced latency. However, once again mobility
is not taken into consideration in this work.

On the other hand, Jeon et al. [10] considered mobility-
aware task offloading in a distributed edge environments. The
authors proposed an impractical optimization algorithm with
high computational complexity while energy consumption
was not considered. Li et al. [11] focused on minimizing costs
in a mobility-aware task placement in D2D-assisted MEC
environments. However, overlooking energy and delay opti-
mization limits its applicability in resource-constrained envi-
ronments. Fragkos et al. [12] introduced an AI-empowered
scheme for UAVs data offloading to MEC servers. However,
mission prolonging through energy minimization was not
considered. Finally, a mobility-aware computation offloading
scheme for swarm robotics, was presented in [13] leveraging
DRL techniques. However, the mobility is only considered
passively and is not included in the DRL action.

In contrast to existing works, our proposed approach uti-
lizes a dynamically adapting DRL algorithm with mobility
awareness that jointly decides where to offload and where to
move to comprehensively optimize energy and delay in MEC
environments. By considering both mobility patterns and com-
putational efficiency, we aim to address the limitations of prior

Fig. 1: System Overview.

approaches and provide an effective computation offloading
solution in dynamic and resource-constrained scenarios.

III. SYSTEM MODELING

We assume that the system operates within a controlled
environment, providing a dynamic space for robots to navigate
and perform tasks. Specifically, I wall-mounted sensors are
strategically distributed throughout the environment, contin-
uously collecting data and transmitting them for processing
to one of the R mobile robots they are assigned to. Each
robot r ∈ R is wirelessly tethered to a subset of Ir sensors.
Receiving sensor data generates a number of computational
tasks for the robots, which then need to decide where to
execute the computation of said tasks, locally or on another
available robot, and whether to relocate or not to facilitate
energy- and delay-efficient task completion. Such a setup
resembles a factory floor automation for Industry 4.0/5.0
environments (e.g., Warehouse Robotics) where computation-
ally hungry tasks include object detection for navigation and
quality control among others [14]. An illustrative overview of
the envisioned system setup is depicted in Fig. 1. The rest of
this section outlines the system modeling and the formulation
of the optimization problem. Then, the problem at hand is
formulated as a Markov Decision Process (MDP) and the
definitions for the main components are given.

A. Robot’s Resources & Decisions

We assume that time is slotted in timeslots t = 0, 1, . . .N.
Each robot r ∈ R is equipped with Cmax

r computational
resources and Emax

r remaining energy. In our model, the
robots operate on a discrete grid, where each cell represents a
unit distance. The coordinates of each cell can be represented
as integer pairs (x, y) with x, y ∈ N. Mobility decisions are
aimed at positioning each robot strategically within the envi-
ronment to optimize task execution. Moving closer to sensors
reduces the delay in receiving information and processing
tasks, improving the overall system efficiency. On the other
hand, if the offloading decision involves transferring tasks

to another robot, the moving robot may adjust its position
to minimize transmission delay to other robots, ensuring
efficient task execution. However, the wireless robot-sensor
tethering has a distance limit Wmax, so their mobility is
constrained by it. Let each robot initiate from a position
(x0

r, y
0
r) on the grid and at each timeslot t it is allowed to

move to neighboring cells that are adjacent to its current
position in the cardinal directions: up, down, right, or left,
or remain in the same position. Since each robot’s movement
is assumed to be controlled in our environment, we introduce
the following decision variable m

(t)
r = (m

(t)
rx ,m

(t)
ry), with

m
(t)
rx ,m

(t)
ry ∈ {−1, 0, 1} subject to m

(t)
rx + m

(t)
ry ≤ 1. Then,

each robot’s movement can be described by the following
discrete-time process:

x(t+1)
r = x(t)

r +m(t)
rx , (1)

y(t+1)
r = y(t)r +m(t)

ry . (2)

To accommodate the offloading decision process, we intro-
duce the binary decision variable o

i(t)
r,r′ ∈ [0, 1], which equals

to 1 if robot r offloads the task i to another robot r′. Without
loss of generality, we assume that the task can be only
offloaded once, by the initial robot-receiver. Specifically, each
robot receives one task at the beginning of a timeslot, while
the movement, offloading decision, as well as the execution
of the task are completed within said timeslot. For ease
of presentation, in the following we temporarily drop the
timeslot notation t.

B. End-to-end Delay

1) Transmission Delay: We assume that at each given
point, each sensor i ∈ I transmits data regarding a single task.
The transmission delay, DT

i,r, incurred during information
exchange is affected by the data size, L (in KB), available
bandwidth, b (in Hz), channel gain, h, and noise power of
the communication channel, σ2 (in dBm), as well as the
transmit power P (in dBm). When a robot r ∈ R receives data
from a sensor, the transmission delay depends on the distance
between the robot and sensors, denoted by dir. If subsequently
the task is offloaded to another robot r′ ∈ R, there is an
additional transmission delay incurred, which depends on the
distance between the robots, denoted by dr,r′ . Hence, the total
transmission delay for task i generated at timeslot t for robot
r is given according to the Shannon-Hartley theorem by:

DT
i,r=Li

 di,r

b log2

(
1+Pi h

|σ2|

)+|R|∑
r′=1

oir,r′
dr,r′

b log2

(
1+Pr h

|σ2|

)
, (3)

2) Execution Delay: The execution delay (DE
i,r) for a task

i is inversely proportional to the computational resources
ci required by the task i and allocated by robot r for its
completion and is calculated as:

DE
i,r =

Li

ci
. (4)

3) End-to-end Delay: Subsequently, we define the task
end-to-end delay (Di,r) as the sum of the transmission and
execution delays:

Di,r=DT
i,r + (1−

|R|∑
r′=1

oir,r′)D
E
i,r +

|R|∑
r′=1

oir,r′D
E
i,r′ . (5)

C. Energy Consumption

1) Transmission Energy Consumption: We assume that the
energy a robot r consumes for receiving data from a sensor i
is negligible. Thus, the only transmission energy consumption
induced on the robot’s side is a result of offloading the task to
robot r′ and it depends on the size of the task Li, the robot’s
transmission power Pr and the duration of the transmission,
[15] as follows:

ET
i,r,r′ = Pr

Li dr,r′

b log2

(
1+ Pr h

|σ2|

) . (6)

2) Execution Energy Consumption: The execution energy
consumption for a task i is proportional to the computational
resources ci required for its completion and is calculated as:

EE
i,r = K c2i Li, (7)

where K is the effective switch capacitance coefficient that
determines the relationship between the allocated computa-
tional resources and the energy consumed for executing task
i.

3) Total Energy Consumption: The calculation of the sys-
tem energy consumption at timeslot t for robot r is the sum
of the transmission and execution energy consumption as a
result of the offloading decisions, and is given by:

Er =

|R|∑
r′=1

|Ir′ |∑
i=1

o
i,(t)
r′,r E

E
i,r+

|R|∑
r′=1

|Ir|∑
i=1

(1− o
i,(t)
r,r′)E

E
i,r+

|R|∑
r′=1

|Ir|∑
i=1

o
i,(t)
r,r′ E

T
i,r,r′ (8)

D. Problem Definition

To prolong the mission duration and at the same time
optimize task completion delays, we formulate the following
optimization problem, which results in jointly finding the
optimal trajectory and task scheduling decisions that minimize

the total system energy consumption and task completion
delay over a time horizon T :

min
m(t)

r , o
(t)
r,r′

T∑
t=1

(

|R|∑
r=1

(αE(t)
r +

|Ir|∑
i=1

D
(t)
i,r)) (9a)

s.t.

|R|∑
r′=1

o
i,(t)
r,r′ ≤ 1, ∀r ∈ R,∀i ∈ Ir,∀t ∈ T, (9b)

m(t)
rx +m(t)

ry ≤ 1, ∀r ∈ R,∀t ∈ T, (9c)

D
(t)
i,r ≤ Dmax

i , ∀r ∈ R,∀i ∈ Ir,∀t ∈ T, (9d)
|R|∑
r′=1

|Ir′ |∑
i=1

o
i,(t)
r′,r c

(t)
i +

|R|∑
r′=1

|Ir|∑
i=1

(1− o
i,(t)
r,r′)c

(t)
i ≤

≤ Cmax
r ,∀r ∈ R,∀t ∈ T, (9e)

T∑
t=1

|R|∑
r=1

|Ir|∑
i=1

E(t)
r ≤ Emax

r ,∀r ∈ R,∀t ∈ T,

(9f)

d
(t)
i,r ≤Wmax,∀r ∈ R,∀i ∈ Ir,∀t ∈ T. (9g)

where 0 ≤ α ≤ 1 is a coefficient that introduces a bias for the
energy consumption against delay minimization. Constraint
(9b) ensures that each task is offloaded to at most one
robot. Constraint (9c) restricts the movement of each robot
to neighboring cells on the grid. Constraint (9d) imposes a
maximum end-to-end delay limit for each task. Constraints
(9e)-(9f) ensure that each robot’s computational and energy
resources are not depleted and finally, constraint (9g) limits
the mobility of the robot to the proximity of its sensors. Since
the calculation of energy and delay depends on the movements
of the robots, and these movements are quantized in the grid,
combinatorial aspects are introduced to the problem, as the
movement decisions need to be made from a finite set of
possible actions. Additionally, the non-linear dependencies
posed as a result, further complicate the problem, making
it difficult to devise an algorithm that provides real-time
solutions. Instead, we decide to decompose the problem into a
sub-problem to be solved at each timeslot t ∈ T and formulate
it as a Markov Decision Process. Then, we propose a DRL-
based mechanism for solving it online.

E. Markov Decision Process (MDP) Formulation

In a typical MDP, the basic structure comprises five es-
sential components: M = {S,A,P,R}. Here, S refers
to the state space, encompassing all the possible scenarios
that a solver agent might encounter. The available set of
actions for the agent is denoted by A. Transition probabilities,
represented by P , quantify the likelihood of transitioning from
one state to another given a specific action. Rewards obtained
as a consequence of actions are denoted by R. As the state
space in our scenario is high-dimensional, precise calculation
of P is not feasible. Thus, the MDP is simplified into a model-
free process M = {S,A,R}, defined as follows:

1) State: At each timeslot t, the system state St contains
each robot’s available computational and energy resources, ċ
and ė respectively, incoming tasks, ι assigned from its tethered
sensors, and position (x

(t)
r , y

(t)
r) in the grid:

St = {ċ(t)r , ė(t)r , ι(t)r (x(t)
r , y(t)r) | ∀r ∈ R}. (10)

A state is terminal if there are no more tasks left to execute
on any robot, i.e., ιtr == 0,∀r ∈ R.

2) Action: We define a valid action as the joint decision of
the robots’ movements and their offloading choice regarding
incoming tasks from sensors on the current timeslot t. First,
each robot determines its movement, then, decides whether
to execute tasks locally or offload them to other robots.
This sequential process reflects the practical scenario where
movement precedes task execution or offloading.

At = {oi,(t)r,r′ ,m
(t)
r | ∀r, r′ ∈ R,∀i ∈ ι(t)r }. (11)

3) Reward: After performing an action At on state St, the
agent gets a feedback, which directly determines its strategy.
As our optimization objective is to minimize both the energy
consumption and task completion delay, we formulate the
reward as the scaled evaluation of the objective function Eq.
(9). To embed the remaining tolerance constraints, the reward
is severely penalized if the actions result in violation of the
system constraints (9d)-(9g):

Rt=


≪ 0, if violation,

∆(
|R|∑
r=1

(αE
(t)
r +

ι(t)r∑
i=1

D
(t)
i,r), otherwise,

(12)

where ∆ is a scaling constant coefficient.

IV. DRL-BASED TRAJECTORY PLANNING AND SENSOR
TASK SCHEDULING FOR EDGE ROBOTICS

Having formulated an MDP for the problem (9), we utilize
DRL to efficiently solve it. Specifically, we make use of a
Deep Neural Network (DNN) to estimate Q(St,At), i.e., the
expectation of the long-term reward for each pair of system
state and robots’ decision. This value is typically calculated
through the Bellman equation: Q(St,At) ← Q(St,At) +
ζ(Rt|St,St+1,At

+ γ maxAt+1
Q(St+1,At+1)−Q(St,At)),

where ζ is the learning rate that satisfies 0 < ζ < 1, and 0 <
γ < 1 is the discount factor, used to model the uncertainty in
the future actions. However, as the number of robots, sensors
and the size of the grid becomes larger, the system’s possible
states and actions grow exponentially in size, making the exact
computation of this Q-value in real time infeasible.

The basic idea behind training the DNN to estimate the
Q-value by using a Deep Q-Networks (DQN) mechanism is
briefly presented in Algorithm 1. Notice that we make use
of an experience replay memory to improve the sample effi-
ciency and stability of training, while we adopt the ϵ-greedy
policy for the joint trajectory planning and task offloading
action selection, since it gives us a better balance between
exploration and exploitation. To update the weights of the

Q-network, we use the Stochastic Gradient Descent (SGD)
algorithm. This approach enables real-time decision-making
for the robots, without relying on a pre-defined system model.

After having the DNN’s weights trained, the online phase of
the proposed framework initiates with acquiring information
about the robots’ and the environment state. Based on this
information, it calculates the current system state St using
Eq. (10). With the current state available, the agent then
selects an action At using the trained network’s policy. This
action reflects the joint robots’ movement and task offloading
decisions for the timeslot t.

Algorithm 1: DRL-based Trajectory Planning and
Sensor Task Scheduling for Edge Robotics - Training

1 Initialize network Q and target network Q̂ randomly.
2 Initialize experience replay memory B.
3 for t = 1, 2, . . . do // Sampling
4 ϵ← set new epsilon with ϵ-decay.
5 Compute current system state St.
6 Select a joint movement and offloading action for

all robots At using ϵ-greedy policy.
7 Execute At, produce St+1 and collect Rt.
8 done← ι

(t)
r == 0,∀r ∈ R

9 Store experience (St,St+1,At,Rt) in B.
10 if enough experiences in B then // Learning
11 Sample minibatch of M transitions from B.
12 for each (Sm,Sm+1,Am,Rm, donem)∈M do
13 if donem then
14 ym ← Rm

15 end
16 else
17 ym← Rm+γmaxAm+1Q̂(Sm+1,Am+1)
18 end
19 end
20 Loss L ← 1

M

∑M−1
m=0 (Q(Sm,Am)− ym)2

21 Update Q using SGD by minimizing L.
22 Every C steps, copy weights from Q to Q̂.
23 end
24 end

V. RESULTS

For the evaluation, we simulate a factory floor, spanning
12m × 12m. Four autonomous robots are positioned within
the environment, each one tethered with four designated
sensors, continuously collecting data from the environment
and transmitting them to their connected robot for processing.
The available frequency capacity of each robot ranges be-
tween 2GHz and 5GHz and their energy resources between
1500J and 6000J . Task assignments are standardized, with
the robot executing a single application characterized by
data size of L = 200KB and computational demands of
c = 300Mcycles. The rest of the system parameters are set
as follows: the effective switch capacitance K is set to 10−27,

Fig. 2: Training Process Convergence.

(a) Energy Consumption. (b) Task Delay.

(c) EDWA (d) Constraint Violations.

Fig. 3: Benchmarking the proposed mechanism.

the transmission power P for both sensors and robots is set
at 20dBm, bandwidth b = 1.2GHz, the channel gain h is set
to 10−7, and the noise variance σ2 at 10−12.

The training phase spans 104 episodes. Regarding the
training parameters, we fine-tune the learning rate ζ set
to 0.03 and the discount factor γ at 0.99. The DNN’s
architecture comprises two hidden layers with 256 and 512
neurons respectively. The experience replay memory has a
size of 5 × 104 while we use a batch size M of 512. The
weights of the target network Q̂ are iteratively updated at each
step, ensuring adaptability and responsiveness to evolving
environmental conditions. The convergence plot, illustrated
in Fig. 2, provides a comprehensive overview of this iterative
learning process, depicting the model’s progression towards
increasingly effective decision-making. Here, we showcase a
moving average of the last 100 values of the total system
reward. We see that the agent learns the optimal policy rather
quickly, in less than 3000 episodes.

We benchmark our mechanism against the following five
baselines: i) the Least Used Offloading (LUO) algorithm
which greedily prioritizes task offloading to robots with the
most available resources, thus optimizing resource utilization
and ensuring balanced task distribution across the system.

The mobility here is randomly decided. ii) the Least Used
& Robot Movement towards the Sensors (LURMS) algorithm,
which builds upon LUO but also incentivizes the robots
movements towards the sensors, enabling robots for efficient
data collection, thereby minimizing sensor-to-robots transmis-
sion delays. iii) the Least Used & Robots movement towards
Clustering (LURMC) algorithm, which builds upon LUO but
also incentivizes the robot’s movements towards the robot
it offloads to, optimizing inter-robot communication. iv) the
Local Processing Only (LPO) algorithm which restricts task
processing exclusively on the robot. The robots here are static.
v) the Random Offloading (RO) algorithm which follows a
randomized approach to task allocation and mobility.

In Fig. 3, we present the average results of 100 experi-
ment repetitions initiating from 10 distinct states. The initial
environmental conditions were hand-picked to reflect real-
world dynamics such as fluctuations in energy availability,
computational resources, and bandwidth constraints. We first
evaluate the average energy consumption in Fig. 3a. Our
mechanism resulted in the most energy efficient trajectory
planning and sensor task scheduling; this verifies its ability in
adapting to the dynamic environment conditions and selecting
the optimal movement and offloading actions. Then, we
examine the end-to-end average delay performance of all
six algorithms in Fig. 3b; here, the LPO yielded the mini-
mum average delay, since all the tasks are executed locally
without additional consideration of energy consumption. The
proposed mechanism consistently outperformed the rest of
the baseline algorithms in minimizing delays, showcasing its
ability to optimize task allocation and robot mobility while
keeping the energy consumption low.

The first two performance evaluations give more insight
about the superiority of our mechanism independently for the
two main metrics under consideration. Additionally, in Fig.
3c, we depict the Energy-Delay Weighted Average (EDWA)
score for all algorithms. This metric is the average of the ob-
jective function (9). Here, our algorithm clearly outperforms
all the others. This solidifies that our approach has a good
ability of finding a balance between energy consumption and
delay minimization in a complex, dynamic environment like
the one envisioned. Finally, in Fig. 3d we demonstrate the
reliability performance of each alternative, in the form of
energy and delay constraint violations. Here, we notice that
the static, greedy solutions, i.e., LU and LPO, as well as the
random one, RO, result in the most constraint violations per
100 experiments (≈ 80%). The proposed algorithm achieved
a perfect reliability score across all scenarios, showcasing its
adaptive nature and robust decision-making capabilities. As a
close second and third, LURMS and LURMC managed well
to respect the thresholds showing the importance of optimiz-
ing the trajectory together with the offloading decisions.

VI. CONCLUSION

In this paper, we introduced a DRL-based trajectory plan-
ning and task scheduling mechanism for edge robotics. We

first mathematically formulated the problem of decision-
making regarding robot movement and task offloading. Since
this problem is very challenging to solve in real-time, we
reformulated it as a Markov Decision Process and proposed
a DRL-based mechanism to solve it online. Our algorithm
showed superior performance against other baselines by min-
imizing end-to-end task delays and improving energy utiliza-
tion whilst respecting the system’s constraints. Future plans
involve fine-tuning the algorithm parameters and exploring
alternative RL algorithms for enhancing scalability.

REFERENCES

[1] F. Saeik et al., “Task offloading in Edge and Cloud Computing:
A survey on mathematical, artificial intelligence and control theory
solutions”, Computer Networks, vol. 195, p. 108177, 2021.

[2] D. Dechouniotis, D. Spatharakis and S. Papavassiliou, “Edge Robotics
Experimentation over Next Generation IIoT Testbeds,” IEEE/IFIP Net-
work Operations and Management Symposium, 2022, pp. 1-3.

[3] S. R. Behera, N. Panigrahi and S. K. Bhoi, “A Novel Dynamic D2D-
assisted Offloading Decision Making in Multi-user Edge Computing
Environment,” OITS International Conference on Information Technol-
ogy (OCIT), 2023, pp. 144-149.

[4] M. Avgeris, M. Mechennef, A. Leivadeas, and I. Lambadaris, “A
two-stage cooperative reinforcement learning scheme for energy-aware
computational offloading”, in IEEE 24th Int. Conference on High
Performance Switching and Routing (HPSR), 2023, pp. 179–184.

[5] L. A. Grieco, G. Boggia, G. Piro, Y. Jararweh, and C. Campolo
(Eds.), “Ad-Hoc, Mobile, and Wireless Networks: 19th International
Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020,
Bari, Italy, October 19–21, 2020, Proceedings (Vol. 12338),” Springer
Nature.

[6] F. Jiang, F. Wei, J. Wang and X. Liu, “Delay-Aware Energy Minimiza-
tion Offloading Scheme for Mobile Edge Computing,” IEEE/CIC Int.
Conference on Communications in China (ICCC), 2020, pp. 717-722.

[7] H. Wang, Z. Lin and T. Lv, “Energy and Delay Minimization of
Partial Computing Offloading for D2D-Assisted MEC Systems,” IEEE
Wireless Communications and Networking Conference (WCNC), 2021,
pp. 1-6.

[8] M. Li, T. Chen, J. Zeng, X. Zhou, K. Li and H. Qi, “D2D-Assisted
Computation Offloading for Mobile Edge Computing Systems with
Energy Harvesting,” 20th Int. Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2019, pp. 90-95.

[9] N. Lalwani, V. Mehta and S. N. Merchant, “Efficient Resource Al-
location for Crowd-Cloud Assisted D2D Computation Offloading,”
2019 16th IEEE Annual Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 2019, pp. 1-2.

[10] Y. Jeon, H. Baek and S. Pack, “Mobility-Aware Optimal Task Offload-
ing in Distributed Edge Computing,” 2021 International Conference on
Information Networking (ICOIN), 2021, pp. 65-68.

[11] J. Li, W. Liang, M. Chen and Z. Xu, “Mobility-Aware Dynamic Ser-
vice Placement in D2D-Assisted MEC Environments,” IEEE Wireless
Communications and Networking Conference (WCNC), 2021, pp. 1-6.

[12] G. Fragkos, N. Kemp, E. E. Tsiropoulou and S. Papavassiliou, “Arti-
ficial Intelligence Empowered UAVs Data Offloading in Mobile Edge
Computing,” IEEE Int. Conf. on Communications (ICC), 2020, pp. 1-7.

[13] X. Wang, H. Guo, “Mobility-Aware Computation Offloading for Swarm
Robotics using Deep Reinforcement Learning,” IEEE Annual Consumer
Communications & Networking Conf. (CCNC), 2021, pp. 1-4.

[14] A. Hameed, J. Violos, A. Leivadeas, N. Santi, R. Grünblatt and N.
Mitton, “Toward QoS Prediction Based on Temporal Transformers
for IoT Applications,” in IEEE Transactions on Network and Service
Management, vol. 19, no. 4, pp. 4010-4027, 2022.

[15] G. Nieto, I. de la Iglesia, U. López-Novoa and C. Perfecto, “Deep
Reinforcement Learning-based Task Offloading in MEC for energy and
resource-constrained devices,” IEEE Int. Mediterranean Conference on
Communications and Networking (MeditCom), 2023. pp. 127-132.

