A Two-Stage Cooperative Reinforcement Learning

Scheme for Energy-Aware Computational
Offloading

Marios AvgerisT, Meriem Mechennef*, Aris Leivadeas*, Ioannis Lambadaris'
*Department of Software and IT Engineering, Ecole de technologie supérieure (ETS), Montréal, Canada
tDepartment of Systems and Computer Engineering, Carleton University, Ottawa, Canada
mariosavgeris @cunet.carleton.ca, meriem.mechennef.1 @ens.etsmtl.ca, aris.leivadeas@etsmtl.ca, ioannis@sce.carleton.ca

Abstract—In the 5G/6G era of networking, computational
offloading, i.e., the act of transferring resource-intensive com-
putational tasks to separate external devices in the network
proximity, constitutes a paradigm shift for mobile task execution
on Edge Computing infrastructures. However, in order to provide
firm Quality of Service (QoS) assurances for all the involved
users, meticulous planning of the offloading decisions should be
made, which potentially involves inter-site task transferring. In
this paper, we consider a multi-user, multi-site Multi-Access Edge
Computing (MEC) infrastructure, where mobile devices (MDs)
can offload their tasks to the available edge sites (ESs). Our goal
is to minimize end-to-end delay and energy consumption, which
constitute the sum cost of the considered system, and comply with
the MDs’ application requirements. To this end, we introduce a
two-stage Reinforcement Learning (RL)-based mechanism, where
the MDs-to-ES task offloading and the ES-to-ES task transferring
decisions are iteratively optimized. The proper operation, effec-
tiveness and efficiency of our proposed offloading mechanism is
assessed under various evaluation scenarios.

Index Terms—Computational Offloading, Edge Computing,
Reinforcement Learning, Deep Q-Networks, Latency minimiza-
tion, Energy consumption minimization.

I. INTRODUCTION

The rapid advancement of Internet of Things (IoT) and
5G/6G networks has led to the emergence of a plethora of
diverse time-sensitive end energy-consuming mobile applica-
tions, such as Augmented Reality (AR) and Virtual Reality
(VR). However, the limited computational capabilities and
battery lifetime of mobile devices (MDs) comes forth as a
challenge in executing such applications. To mitigate this, dur-
ing the last few years Multi-Access Edge Computing (MEC)
and its variations (e.g., Fog Computing) has been proposed as
a viable solution which has attracted significant attention. The
key idea behind this concept is to liberate MDs by offloading
the computationally intensive workloads to powerful servers in
the network proximity, thus reducing the energy consumption
of the devices [1]. Compared with cloud-based task execution,
MEC can overcome the drawbacks of high transmission delay,
therefore substantially achieving the millisecond-scale latency
required in said applications [2].

However, computational offloading without proper planning
can potentially result in various disturbing phenomena during

the transmission and processing of the tasks, including unex-
pected increases in propagation and processing delay, as well
as downtime [3]. In that case, the trade-off between on-device
execution and offloading at the local Edge Site (ES) should
be investigated. At the same time, potentially transferring
offloaded tasks for processing from local to remote ESs, to
alleviate the overloaded sites by utilizing the underloaded
ones, should be evaluated. Overall, carefully determining the
offloading strategy in a multi-site edge infrastructure, for
achieving load balancing while minimizing processing delay
and energy consumption is an imminent challenge.

A. Related Work & Motivation

The problem of computational offloading falls into the
knapsack resource allocation category, which is NP-hard [1],
thus approximate solutions based on Machine Learning, Game
Theory and Heuristics have been proposed in the literature.
Authors in [4], consider a MEC-enabled cellular system,
in which multiple mobile users offload their computational
tasks via wireless channels to one MEC server. A single-
stage Q-learning and a Deep Q-Network (DQN)-based scheme
are used to jointly optimize the offloading decisions and
the computational resource allocation, with the objective of
minimizing the sum of delay and energy consumption. In
[5], the mutual Device to Device (D2D) cooperation problem
among users with heterogeneous demands is investigated in
a MEC environment. Here, a game theoretic, multi-round
cooperation matching algorithm is proposed, where users with
different demands can share their idle local resources in order
to minimize their processing delay. On the other hand, Yin
et al. in [6] benchmark different greedy heuristics for task
offloading from multiple devices to multi-core edge servers,
with the objective of minimizing the energy consumption
under time constraints.

To further retain low energy consumption and end-to-end
delays, intra-infrastructure load balancing after task offloading
is being proposed. Thus, recently, many works in the pertinent
literature started exploring the cooperation between the differ-
ent edge sites. In [2], the authors introduce a Markov Random
Field based mechanism for the distribution of the excess

workload between the different edge sites, as a subsequent
stage to the device-to-edge task offloading. This technique is
shown to achieve energy optimization at the infrastructure,
while respecting QoS requirements. Xu et al. [7] include
additionally the cloud tier in their proposed system; here they
devise a two-stage game theoretic scheme to reach the goal
of optimal offloading on a cooperative user device-edge-cloud
environment. The existence of a Nash equilibrium is proven,
that minimizes energy consumption under delay constraints. A
similar three-tier cooperative computational offloading scheme
is proposed in [8] as well, this time utilizing a joint iterative
algorithm based on the Lagrangian dual decomposition to
minimize latency under energy consumption constraints.

B. Contributions & Outline

In this work, our goal is to further investigate the en-
ergy consumption and processing delay minimization process
during computational offloading in a cooperative MEC envi-
ronment, through a novel, two-stage Reinforcement Learning
(RL) mechanism. The contribution of this paper is threefold:

1) We consider a MEC infrastructure consisting of mul-
tiple interconnected nodes (“multi-site””), where MDs
are able to offload computationally intensive tasks to
reduce their energy consumption. To enable a distributed
and autonomous decision making, an iterative RL-based
mechanism is introduced, where the MDs act as Stochas-
tic Learning Automata (SLA). In every iteration of
this process, each MD independently selects whether to
offload at the attached ES or execute the task on the
device (MD-to-ES offloading), aiming at minimizing a
cost which consists of the task processing time and the
MD’s energy consumption (first stage).

2) This decentralized offloading can potentially overload
some ESs, thus resulting in higher than anticipated
processing delays for the MDs that selected to offload
their tasks to them. To resolve this, we integrate an ES-
to-ES cooperative offloading mechanism which aims to
balance the workload in the infrastructure, by proactively
transferring these tasks to the underloaded sites. An
offline-trained DQN is utilized to make these decisions
at the end of each iteration of the first stage and the
updated processing delays are fed back to the MDs for
them to reconsider their offloading decisions (second
stage).

3) We combine the two stages to a multi-round cooperative
computational offloading mechanism, which iteratively
optimizes the decisions of the MDs and the ESs and
obtains the stable convergence of the optimization prob-
lem. Detailed numerical results, obtained via simulation,
evaluate and demonstrate the effectiveness and efficiency
of the proposed work in terms of processing delay and
energy consumption minimization.

The rest of this paper is organized as follows. Section II
presents the system model and introduces the concepts of
RL in computational offloading, as they are adopted in this
work. In Section III the task offloading optimization problem is

Fig. 1: System Overview.

formulated and solved using the SLA and the DQN algorithms
in succession. Section IV presents the performance evaluation
of our proposed framework and Section V concludes the paper.

II. SYSTEM MODEL

We denote the set of the interconnected ESs as & =
{1,2,...,S} where each ES consists of a small datacenter
connected to a wireless Access Point (AP) to provide offload-
ing services for the resource-constrained MDs of its coverage
area, as illustrated in Figure 1. The available resources of
each ES s € S are given by the vector {F,, W}, where
F; stands for the available computational resources and W
for the available bandwidth respectively. The set of MDs
covered by each ES s is denoted as N, = {1,2,..., Ny}
and they are assumed to be quasi-static for the examined
offloading period, thus no MD mobility between different
ESs is considered. An MD n, € N, is characterized by
the vector {f,.,pn.} denoting its computing capabilities and
uplink transmission power respectively. Additionally, each MD
ns has one application task for execution; depending on the
type of application executed by n,, each task is characterized
by the vector {d,.,cn.,Tn.,€n.}, Where d,_ specifies the
the amount of input data to be processed, ¢y, represents the
workload, i.e., the total number of CPU cycles required, 7,
denotes the maximum tolerable end-to-end delay and e,,_ the
maximum tolerable energy consumption for the task. A task
can either be executed on the MD (“on-device execution’) or
offloaded at the ES of coverage (“remote execution”). For the
sake of simplicity, for one offloading period, we assume a one-
to-one relationship between a device and its task, thus for the
rest of the paper, these terms will be used interchangeably.

A. Computation Models

1) On-device Execution: Given that f,_ denotes the com-
puting capabilities (i.e., CPU cycles per second) of MD ng,
the on-device execution time is tffs = ¢p,/fn, and the
corresponding energy consumption for the MD Eff = KCp,,
where « is the consumed energy per CPU cycle in joules.

2) Remote Execution: In the case where task n is offloaded
to the attached ES s, its end-to-end delay, denoted by tfﬂ: s
comprises of two parts: i) the uplink transmission time, tﬂ;
and ii) the execution time at the MEC server, k. Following
[4], we assume that the task’s output size is much smaller than
the input size and that the downlink rate from an ES to an MD
is high enough, to allow for neglecting the transmission time

and energy consumption for delivering the computed results.
Additionally, we assume that the wireless bandwidth of ES s,
Ws, is equally allocated to the MDs that choose to offload
to it. Then, with r;’f being the number of offloaded tasks to
s, the bandwidth assigned to MD n, to upload its task input
data to s is w,, = W,/r°/ and based on that, the transmission
time can be calculated by ¢!/ = d,, /w,,. The corresponding
energy consumption for MD n during the transmission is then
E,‘;f = Pn, tff _. Regarding the offloading processing part, given
again that the available resources of ES s, Fj, are equally
allocated to the MDs that offload to it, the computing resources
that site s allocates to task n, can be calculated as F,/rof
and subsequently the computation execution time is given by
e = (cn,19")/Fs. According to the above, the total end-
to-end delay experienced by MD ng in the case of remote
execution becomes t;iﬂ: =t et

B. Problem Formulation and Analysis

The computing resources at the edge are limited to micro
datacenters consisting of only few servers [2], thus overloading
an ES with offloaded requests is not unusual. Balancing the
offloaded workload by transferring tasks from the overloaded
to the underloaded ESs for execution, in order to minimize
QoS violations for the MDs, is a prominent way for dealing
with this challenge. Effectively, in our setting we identify
and explore two task-offloading opportunities: i) MD-to-ES,
i.e., the typical computational offloading between the user
device and the edge site and subsequently ii) ES-to-ES, which
concerns the cooperation between the different sites of the
infrastructure, to enhance the effectiveness of 1).

To realize this synergy, we first introduce the binary variable
an, € {0,1} which corresponds to the execution mode for task
ns; we have a,, = 0 for on-device execution and a,, = 1
for offloading to the attached ES. Consequently, we define an
offloading decision vector As; = {a1,as,...,an, } to account
for all the MD devices connected to ES s. Next, we introduce
the binary variable kf;ﬁ € {0,1} to signify the transferring
of the offloaded task n, from ES s to s’ (k;f;s = 1), with
s# s 6 S, as well as the transferring decision vector K,,, =
{kl k2 ...k}, Vng, € N,. This allows for formulating
the transferring decision matrix for the tasks of each ES s as
Ks = {Kh Ko, ..., KNS}SXNS, Vs € S.

Before formulating the problem, we have to redefine the re-
mote execution delay calculation t"f to take into consideration
the additional delay introduced b ES-to-ES task transferring.
First, let us replace 7%/ with Yot 1 ap, for wy, calculation
in t!7 and with Zn G, + Zs L Zn i ky, in £
calculation respectively. Assuming that the propagatron delay
for the ES-to-ES communication, ¢,,, . is proportional to the
distance (number of hops) between the edge sites s and s,
the remote execution delay becomes 3/ = ¢ + Z;,?g[(1—
ks I+ ks L@+ t5",)]. We then formulate the joint task
ofﬂoadrng problem for MEC infrastructures as an optimization
problem. Our objective is to minimize the weighted sum cost
in terms of the completion time and the energy consumption
for all the MDs. Under the constraint of maximum tolerable

delay and energy consumption, the problem can be formulated
as follows:

min > Y [(1—an) (it + BEL) (1a)
$yIVs seSn eEN,
+ an, (ﬁlti{: + ﬂ2EZ£)]
s.t. an, € {0,1},Vns € N, Vs € S, (1b)
ki, €{0,1},¥n, € N,,Vs,5' €S, (1)
s'#s
D gk, SLVn €N Vs ES, (1d)
(1= ap)t +an,tof <7, ,¥n, €N, (le)

(1 —an,)EL +an,BY <e,,,Vns € N, (1)

where the weights 81,8: > 0,51 + B2 = 1, are selected
based on the device configuration and the application needs.
Constraint (1b) represents the computation offloading decision,
while (1c) the task transferring between sites. Constraint (1d)
ensures that a task is transferred to at most one server, while
(le) guarantees that the task completion time should not
exceed the maximum tolerable delay 7,,_, either when executed
locally or remotely. Finally, constraint (1f) ensures that the task
energy threshold is respected, with e, being the maximum
tolerable energy consumption.

Remark. Since task offloading decision set A is composed
of binary variables, both the feasible set and the objective
function of Problem (1) are not convex, making it challenging
to solve the problem. Fortunately, as demonstrated in the
literature [4] this kind of NP hard problems can be easily
solved effectively by applying reinforcement learning methods
rather than conventional optimization methods.

III. ENERGY-AWARE COMPUTATIONAL OFFLOADING
MECHANISM

Leveraging the power of Reinforcement Learning, a two-
stage computational offloading mechanism is proposed to
simultaneously minimize the delay and energy consumption at
MD layer, while achieving a load balancing at the distributed
edge infrastructure. In the first stage, the offloading decision
problem is solved using a decentralized approach based on
Stochastic Learning Automata (SLA). For the second stage, we
initially propose a value-iteration based RL approach utilizing
Q-Learning, to balance the offloaded workload at the edge
and minimize the processing delay for the offloaded tasks.
Later, to overcome the curse of dimensionality, we propose a
DQN method which combines deep learning and RL to solve
the same problem. These two stages are combined to a multi-
round cooperative computational offloading mechanism which
iteratively optimizes the offloading and transferring decisions
until converging to a stable solution.

A. First Stage: MD-to-ES Task Offloading

Stochastic Learning Automata (SLA) is an adaptive, on-
line decision-making unit that improves its performance by
learning how to choose the optimal action from a finite set of
allowed actions through repeated interactions with a random

environment [9]. We assume that each MD n, € N, acts
as an agent and that each offloading decision a,, € {0,1}
corresponds to the SLA action. Then, each agent’s chosen
action in iteration ¢ is based on a probability distribution
Png,a., € P({0,1}) kept over the action-set and in each
iteration; py, 4, (i) is the probability that an agent n, select
action a,,_ in iteration ¢, and P({0, 1}) is the set of probability
distributions over the available action set. Initially, all action
probabilities would be equal and hence the action is randomly
chosen and the probabilities are updated in every iteration.
Based on the problem formulation in (la), we define the
reward of each MD n; in the ¢-th iteration as:

1
1 4 e~ Zl0-aidtie, +ailtn] —rn,]
1

1+ e Zel—afi) Bl tal) B3l —en,]

RO =p-(1-)+

52.(14_

)€ 00,1, @)
where Z;, Zy € RT are gain coefficients which help bring the
respective terms of Eq. (2) close to 1 when the total delay is
less than 7,,, and the energy consumption less than e, _, and
close to 0 otherwise. In this way, we embody constraints (le)
and (1f) into the reward function. The update rule of the SLA
is based on the idea that if an action is selected by the agent n
in iteration 7, and the reward value Rgf) received is high, then
the probability of choosing this action in the next iteration of
the learning procedure increases, with regards to the magnitude
of the perceived reward [10]. The commonly used update rule
in the research literature is the linear reward-inaction (LRI)

defined as follows: pgfjéi = p&)ﬂm +0b- Rf(fs) (1 —pgfs),and)
when ai " = af) and pita) = pia,, —b RV pYa,,

otherwise. Furthermore, the learning rate parameter, 0 < b <
1, controls the convergence of this stage. The system converges
to a stable solution when at least one state probability is close
to 1, for each ng.

B. Second Stage: ES-to-ES Task Transferring

As the offloading decisions of the first stage are made
in a distributed fashion, chances are that an ES might be-
come overloaded with tasks, which can potentially hinder the
processing times. In this direction, exploring a cooperative
solution among the ESs, in the form of task transferring, is
vital towards satisfying the QoS of the users. This step is
performed right before calculating the reward Rgf) in Eq. (2)
and specifically produces the remote execution delay thf . To
solve this problem, we first employ a Q-learning (QL)-based
algorithm (Algorithm 1), with the following elements:

« State: we define as state a vector that contains the avail-
able computational capacity in each ES, after considering
the MDs’ offloading decisions a,_, of the first stage;
o={F,— 21]'::5:1 A, Cn,|s € S}¥S. A state is terminal
if it contains only non-negative values, Z:EEO os =0.

o Action: as an action we use the task transferring decision
matrix introduced in Section II, allowing, however, only

one task transferring in the infrastructure per action; o =
s'#s 1.8 5% (SXNs
{’CS|3 €S, Zses ZnSENS Es'es :15 < 1} X(SxNs),

o Reward: as we opt for driving our edge infrastructure
towards a balanced workload distribution, the first term
of the reward in this stage is the difference between the
current (o) and the next (o’) state’s sum of negative
values, i.e., sites where the offloaded workload is greater
than the available capacity. The second term, penalizes
the transferring of tasks to remote ESs, an action which
increases the additional propagation delay:

0,<0 os<0
/
Ro’,a’,a = 51(E Og — E 08)
seS seS
s'#s

+0200 0 Y D ansth)7 G

sESnsENg s’€S

where d1,02 € RT, are properly selected weights that
balance the contribution of the two terms in the reward.

Algorithm 1: QL-based Task Transferring Training

1 Initialize with zeros: Q(o, «).
2 for each episode do

3 Choose a random infrastructure state o.
4 | while X250, <0 do
5 Select a task transferring action a.
6 Execute «, produce ¢’ and collect Ry o7 o-
7 Qo,a) < Q(o,a) + ((Rooa +
v mazy Qo' a') — Q(o,a))
8 o<+ o
9 end
10 end

Algorithm 1, which is executed only once and offline, produces
the matrix Q(o, &) which contains the expectation of the long-
term reward (calculated through the Bellman equation, line 7)
for each infrastructure state and transferring decision, after
being trained on numerous state-action pairs; ¢ is the learning
rate that satisfies 0 < ¢ < 1, while 0 < v < 1 is the discount
factor, used to model the uncertainty in the future actions.

As the number of ESs and MDs becomes larger, training
Algorithm 1 on a sufficient number of episodes becomes a
tedious and bulky task, as the possible infrastructure states
grow exponentially in size. To overcome this, we propose the
use of a Deep Neural Network to estimate Q(c,«), which
constitutes the basic idea behind Deep Q Networks (DQN)
and is briefly presented in Algorithm 2. Notice that we make
use of experience replay to improve the sample efficiency and
stability of training, while we adopt the e-greedy policy for
the task transferring action selection, since it gives us a better
balance between exploration and exploitation. To update the
weights of the) network, we use the Stochastic Gradient
Descent algorithm (SGD, line 20).

C. Two Stage Cooperative MEC Computational Offloading

To sum up, the proposed cooperative MEC offloading
mechanism operates in two steps per iteration, as illustrated

Algorithm 2: DQN-based Task Transferring Training

1 Initialize network () and target network Q randomly.
2 Initialize experience replay memory D.
3 while not converged do

// Sampling Phase

4 € < set new epsilon with e-decay.

5 Select a task transferring o using e-greedy policy.
6 Execute «, produce ¢’ and collect R, o -

7 done + ZZ&;O 05 ==

8 Store transition (o, o', &, R, done) in D.

9 if enough experiences in D then

// Learning Phase

10 Sample minibatch of M transitions from D.
11 for each (o, 0, Qm, R, done,,) € M do
12 if done,,, then

13 | Ym — Rm

14 end

15 else

16 ‘ Ym — R + ymazoQ(a’,, ')

17 end

18 end

19 Loss ‘C = ﬁ Zivn[;()l (Q(Uma am) - ym)2

20 Update @ using SGD by minimizing L.

21 Every C steps, copy weights from () to Q.
22 end
23 end

in Algorithm 3: (i) each MD of every ES temporarily selects
whether to offload their current task or execute it locally, based
on the probabilities of the SLA algorithm (Section III-A) and
(ii) a load balancing is performed between the ESs to improve
the response time of the offloaded tasks, based on an offline-
trained neural network (Section III-B). The outcomes of this
decision are fed back to the first stage to update the rewards
and probabilities for the next iteration, until convergence to a
stable solution that satisfies the delay and energy consumption
constraints is achieved.

IV. NUMERICAL RESULTS

For the evaluation we consider a MEC infrastructure which
consists of 2 — 25 ESs, while 5 — 10 MDs are connected to
each ES. The available resources of each ES range between
{8GHz,48 Mbps} and {10GH z, 50 M bps}, while the MD ca-
pabilities between {1GH z,498mW } and {2GH z,502mW}.
Regarding the tasks we assume a single application exe-
cuted by each one of the MDs with the following char-
acteristics: {1000kbits, 2000M cycles, 1080ms,4.J}. For the
energy consumption per CPU cycle, following [4], we set
k = 10727(f,.)%. With regards to the First Stage of the
algorithm, we opt for a balanced reward between energy
consumption and delay (Eq. (2)) by setting 81 = 52 = 0.5 and
Zy = Zy = 1; the learning parameter here is set to b = 0.6
and we assume that convergence is achieved when one action
probability for every MD is > 0.9. For the Second Stage,

Algorithm 3: Two-stage Cooperative MEC Computa-
tional Offloading

// Offline
1 Train the) network using Algorithm 2.

// First Stage (Online)
2 Initialize the offloading decision probabilities.
310
4 while not converged do
5 for each ES s € S and MD n, € N, do
6 ‘ Select offloading action aEQ
7 end
// Second Stage (Online)
8 Calculate infrastructure state o.

o | while Y7250, <0 do

based on pg) (g

10 Select transferring action o with the highest)
value. Execute « and produce o”.

1 oo

12 end

13 for each ES s ¢ S and MD n, € N, do

14 Calculate reward RSf) using Eq. (2).

15 Update decision probabilities pg) P

16 end

17 t+—i+1

18 end

the reward weights are set as §; = 0.0005 and d2 = 50, to
balance the contribution of the load balancing and propagation
delay minimization factors. The learning rate is set as ¢ = 0.1
and the discount factor as v = 0.9. We utilize a neural
network with 2 hidden layers with 700 and 600 neurons each.
The size of the experience replay memory is set to 10° and
the minibatch size M = 256. The weights of the target
network Q are updated every 4 steps. We assume that training
convergence is achieved when the average improvement in the
reward (Eq. (3)) over the last 100 episodes is less than 1%.

Fig. 2 showcases the results of the evaluation. We start
with comparing the training time between the DQN and the
plain Q-learning algorithms, used for the Second Stage (Fig.
2a). Both trainings were performed on a MacBook Air with
a 16-core Neural Engine M2 chip and 16GB of RAM. As
seen there, the Q-learning algorithm training duration grows
exponentially with the number of ESs, which makes it an
unrealistic alternative when this number is greater than 5 (> 7
days of real time). On the other hand, DQN provides a far
more tractable training process, with its duration showcasing a
linear behavior to the number of ESs. Although the training is
performed only once and offline, scalability is still important
for applying our framework to larger infrastructures, which
makes DQN a far more preferable choice.

Next, we examine the online convergence behavior of our
algorithm; Fig. 2b illustrates the average collected reward
(Eq. (2)), for various infrastructure settings over 25 iterations,
for 100 experiment repeats. We observe that when fixing the

5 T T T
10° [mmpan 05
[71Q-Learning
10* 045"
10° o 04
[%2] ©
2 H
S 102 o 0.35
o3 o
2] 2] il
1 L
1o 08 ~—EN9 - 65)
L —=—(S,Ns) = (5,10)
0 F (S.Ns) = (15,5)
107 023, ——(SN9) = (15,10)
——(S,Ns) = (25,5)
1 AR 02 (S.Ns) = (25,10)
223344551525 5 10 15 20 25
ESs Iteration
(@) (b)

1500 T 600
550
1400 500l]
450 -
1300 "
2 $a00-
3
1200 5350
300
1100 - 2501
200 - .
1000 150 —‘é—d:\—-—
N P xe A & P 5@
S S \O' L e\ I\)
Tg&a‘?@ we o«ﬁe\\ o (L,c_,\aQe we 0«6@' ce®
(© (d

Fig. 2: Evaluation: (a) Training Time, (b) Convergence Behavior, (c) Benchmarking: Delay and (d) Benchmarking: Energy

average number of MDs per site, increasing the number of ESs
tends to yield a higher average reward for each MD, as more
computational resources become available in the infrastructure.
On the other hand, when fixing the number of ESs, increasing
the number of average MDs per ES naturally results in lower
rewards, as the competition for the available computational
resources becomes stiffer. In any case, convergence to a stable
solution is reached after 25 iterations which translates to less
than 1sec of execution time, making our framework effectively
a real-time decision-making tool.

Finally, we perform a comparative evaluation against a well-
known work from the literature, Li et al. [4], and two baseline
algorithms, one where all the tasks are executed on the MD
(“On-device”) and one where all the requests are offloaded
(“Remote”). In this scenario, 25 ESs were considered, each
one having an average of 7 MDs connected to it, which made
some ESs overloaded when fully offloading. That is why the
Remote’s average achieved delay is the highest. We observe
that our proposed solution manages to overcome this issue by
transferring requests from the overloaded to the underloaded
ESs. On the other hand, the algorithm in [4] selects the on-
device execution for some MDs connected to the overloaded
ESs, resulting in a slightly higher average delay. Regarding
energy consumption, the On-device execution performs the
worst, as expected, and the proposed solution being as energy
efficient for the MDs as the Remote algorithm. The algorithm
in [4] again scores slightly worse in this metric, as instead
of transferring some tasks to underloaded sites, it selects
the on-device execution. All in all, the presence of the load
balancing mechanism in our framework, makes it capable of
exploring the execution alternatives in the infrastructure, for
MDs connected to overloaded ESs, achieving a better delay
and energy consumption compared to typical on-device and/or
remote execution solutions.

V. CONCLUSION

This paper presented a two-stage cooperative, reinforce-
ment learning-based scheme for energy-aware computational
offloading at the edge of the network. With this work, we
aimed to minimize the application end-to-end delay as well
as the energy consumption of the mobile devices during

computationally intensive task execution. In the first stage,
distributed and autonomous task offloading decision making
in the mobile devices is enabled, based on Stochastic Learning
Automata. The second stage devises a Q-learning approach to
allow for task transferring between the edge sites and alleviate
potential overloading phenomena. The results showed that the
proposed framework outperforms the baseline solutions as well
as a well-known similar work in the literature both in terms of
delay and energy. Our future work will focus on incorporating
the users’ mobility in the decision making and eventually
exploring alternative learning techniques for dealing with the
increased dimensionality of the emerging state space.

REFERENCES

[1] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, vol. 195, p. 108177, 2021.

[2] M. Avgeris et al., “ENERDGE: Distributed energy-aware resource
allocation at the edge,” Sensors, vol. 22, no. 2, p. 660, 2022.

[3] S. Bouhoula, M. Avgeris, A. Leivadeas, and I. Lambadaris, “Computa-
tional offloading for the industrial internet of things: A performance
analysis,” in 2022 [EEE International Mediterranean Conference on
Communications and Networking (MeditCom). 1EEE, 2022, pp. 1-6.

[4] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in 2018 IEEE
Wireless communications and networking conference (WCNC). 1EEE,
2018, pp. 1-6.

[5] T. Fang, D. Wu, J. Chen, and D. Liu, “Cooperative Task Offloading
and Content Delivery for Heterogeneous Demands: A Matching Game-
Theoretic Approach,” IEEE Transactions on Cognitive Communications
and Networking, 2022.

[6] G. Yin, R. Chen, and Y. Zhang, “Effective task offloading heuristics for
minimizing energy consumption in edge computing,” in 2022 IEEE In-
ternational Conferences on Internet of Things (iThings) and IEEE Green
Computing & Communications (GreenCom) and IEEE Cyber, Physical
& Social Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics), 2022, pp. 243-249.

[71 F. Xu, Y. Xie, Y. Sun, Z. Qin, G. Li, and Z. Zhang, “Two-stage
computing offloading algorithm in cloud-edge collaborative scenarios
based on game theory,” Computers & Electrical Engineering, vol. 97,
p- 107624, 2022.

[8] Z. Kuang, Z. Ma, Z. Li, and X. Deng, “Cooperative computation
offloading and resource allocation for delay minimization in mobile edge
computing,” Journal of Systems Architecture, vol. 118, p. 102167, 2021.

[9]1 N. Rasouli, R. Razavi, and H. R. Faragardi, “EPBLA: energy-efficient

consolidation of virtual machines using learning automata in cloud data

centers,” Cluster Computing, vol. 23, no. 4, pp. 3013-3027, 2020.

M. Diamanti, E. E. Tsiropoulou, and S. Papavassiliou, “Resource or-

chestration in uav-assisted noma wireless networks: A labor economics

perspective,” in ICC 2021-IEEE International Conference on Commu-

nications. 1EEE, 2021, pp. 1-6.

[10]

