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Abstract—The recent networking trends driven primarily by
the different virtualization technologies, such as Network Func-
tion Virtualization (NFV) and Service Function Chaining (SFC)
pave the way for next-generation network services. In the 5G and
beyond era, such services usually have strict delay requirements
and the wider adoption of the distribution of their computational
needs across the Edge-to-Cloud continuum is certainly a step in
the right direction. However, the majority of the optimization
solutions for placing the virtualized services so far focus on server
selection, leaving other areas such as the impact of Non-Uniform
Memory Access (NUMA) and CPU core selection underexplored.
In this work, we herein formulate the problem of placing services
as SFCs on an Edge/Cloud infrastructure, as a Mixed Integer
Programming (MIP) problem. Then, we propose a heuristic
algorithm called “Dynamic numa node Selection through Cores
consolidation – DySCo” to solve it, which optimizes the placement
in terms of server, NUMA and core selection. To the best of our
knowledge, this is the first attempt to optimize network service
placement in an Edge-Cloud interplay. Extensive simulation
evaluation shows that DySCo is able to perform close to optimal
while finding a solution in a real time fashion. Compared to a mix
of baselines and modified solutions from the literature to treat
this new problem, DySCo reduces on average the deployment
cost by 17.53% and the delay by 28.88% for a given SFC.

Index Terms—Network Function Virtualization, Service Func-
tion Chaining, Edge Computing, Cloud Computing, Resource
Allocation, Non-Uniform Memory Access.

I. INTRODUCTION

The new and upcoming 5G and Internet of Things (IoT)
networks make the requirements in terms of Quality of Service
(QoS) offered to users increasingly strict. High-speed services
requiring data transfer rates up to 20 Gigabit per second and
ultra-reliable services with low latency in the order of 1 mil-
lisecond, are becoming the norm [1]. To achieve such stringent
QoS requirements while reducing the related costs, various
technologies have been developed, which are mainly empha-
sizing on service virtualization. The pinnacle of this effort,
Network Function Virtualization (NFV) allows for decoupling
the network functions (e.g., Network Address Translation -
NAT, Firewall) from dedicated hardware and having it as a
software instance, called Virtualized Network Function (VNF),
running on a conventional server on the Cloud [2]. Service
Providers (SPs) design their own VNFs and by chaining them
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in a specific order they create Service Function Chains (SFCs)
in order to provide their users with the requested network
services. Leveraging the flexibility of virtualization, SFCs can
be deployed in the proximity of end users, at the network Edge
(Edge Computing), shortening propagation times and overall
latency, thus resulting in improved QoS.

Although virtualization allows for distributing the SFC
placement across the Edge-to-Cloud continuum and for re-
ducing the deployment costs compared to a rigid middlebox
deployment, reaping the benefits of this procedure is not
straightforward; optimizing the placement of the VNF com-
ponents among the available servers plays an important role
in improving QoS [3]. For example, deploying an SFC exclu-
sively at the Edge might overload the infrastructure, causing
a performance drop and additional computational latency. On
the other hand, solely utilizing a Cloud infrastructure results
in greater propagation delay. Hence, the need to balance the
load between the remote Cloud and the Edge is evident [4].

Apart from the location of the server, another important
parameter to optimize during the VNF placement is the
communication between the CPU processor and the memory
for task processing. When the processors of a server access the
memory simultaneously, the congestion on the CPU-memory
bus adds latency, hence deteriorating the individual processing
times. Due to the limitation of such uniform memory access,
a Non-Uniform Memory Access (NUMA) architecture has
emerged [5]. This technique divides both the memory (RAM)
and the processor (CPU cores) into sub-blocks, then assigns
each of these sub-blocks of CPU cores and RAM together
forming what is referred to as a NUMA node. These different
nodes are then interconnected enabling any CPU core to
communicate with any memory block in the system. An
example of a NUMA server with two nodes is illustrated on
Fig. 1. This coupling allows for faster memory access when
the CPU core is directly assigned to it, or a slower access
time if the CPU communicates with the memory of another
NUMA node [6]. Recent studies [7] have verified the impact
of carefully selecting NUMA nodes during task placement in
reducing delays and increasing system throughput. Addition-
ally, selecting CPU cores during the VNF placement also has
an often overlooked impact on the processing delay [8] [9].

As we see, optimizing the SFC placement to achieve high
QoS can be a complex procedure. With this in mind, we
propose a solution that reduces the end-to-end delay of SFCs
deployed on an Edge-to-Cloud continuum while reducing the
deployment costs. To the best of our knowledge, this is the first
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Fig. 1: A server with 2 NUMA nodes and 8 CPU cores.

work on SFC deployment, hybridly or exclusively at the Edge
and/or Cloud, that not only optimizes server selection during
VNF allocation, but also goes a step further into a fine-grained
resource provisioning to the level of CPU cores within the
selected NUMA node. This enables us to allocate VNFs not
only to cores on the same server but, whenever possible, on
the same NUMA node and on adjacent CPU cores sharing the
same memory. Our approach aims to explore every possibility
to minimize end-to-end delay, enhance resource utilization and
throughput maximization, recognizing that micro-optimizing
can contribute to overall performance improvements. The
contribution of our work is threefold:

• We formulate the problem of placing the VNFs that
comprise an SFC on an Edge-Cloud infrastructure, as a
Mixed Integer Programming (MIP) problem. The novelty
in this formulation is that a decision is made down to
the CPU core level of the servers, while satisfying the
location constraints (Edge/Cloud) of each VNF, as well
as ensuring that no server is overloaded.

• We propose a heuristic algorithm named “Dynamic numa
node Selection through Cores consolidation – DySCo” to
solve this new version of the VNF placement problem.
Our solution performs fine-grained resource allocation
down to the CPU core level in order to reduce memory
access times, that could lead to lower processing delay for
each VNF. At the same time, we minimize the commu-
nication delays between the different VNFs composing
the SFC, by reducing the number of hops between the
selected servers. This also allows us to optimize the data
flow on the utilized links, creating a double benefit: i)
it decreases the consumed bandwidth which leads to an
increase on the system throughput and ii) it favors the
consolidation of the VMs that are used to implement the
VNFs, leading to a reduction of the deployment costs.

• We evaluate the efficiency of the proposed algorithm
through extensive simulation; DySCo is shown to perform
close to optimal exhaustive solution of the MIP for small-
scale scenarios, while operating in real time. At the same
time, DysCo outperforms in terms of deployment cost
and delay other approaches that do not consider the total
set of constraints and objectives in such a new context.

The remainder of this paper is organized as follows: Section
II highlights the related work, while the system model is
detailed in Section III. The MIP formulation and the design
of our proposed heuristic solution is introduced in Section
IV. The obtained results of the performance evaluation are
presented in Section V. Finally, in Section VI we present our
conclusions and propose some future work directions.

II. RELATED WORK

A. VNF/SFC Placement at the Edge and Cloud

Many works in the pertinent literature have dealt with the
VNF and/or SFC placement problems by considering various
optimization goals. In [10], the authors propose an approach to
find deployment schemes for microservices at the Edge, that
optimize the cost while meeting the demands for application
average response time. Here, a microservice-based application
is modeled as Service Chain while an M/M/c queue model is
adopted to describe the operation of the microservices. The
emerged NP-Complete deployment problem is first relaxed to
a continuous one and then a heuristic approach is utilized to
get integer solutions. On the other hand, Forti et al. [11] use a
logic programming approach to solve the problem of placing
VNF chains onto Edge-Cloud infrastructures. Their prototype,
EdgeUsher, heuristically solves a probabilistic declarative de-
scription of the VNF chain placement problem to ensure high
QoS guarantees, security, and service reliability. The authors
in [12] attempt to simultaneously solve the VNF placement
and the resource allocation problems at the Mobile Edge
Computing (MEC) layer. To this end, they propose a genetic-
based heuristic solution that minimizes the placement cost, as
well as the computational resources and link utilization costs.

Another solution that leverages the power of the genetic
algorithms is presented in [13]; there, the authors propose
a framework that makes use of a delay and location aware
genetic algorithm-based approach, in order to perform opti-
mized sequential SFC placement and to dynamically allocate
the required resources. Using a similar model, Liu et al.
[14] propose two methods based on Lagrange relaxation and
shortest paths in edge weighted graphs to jointly tackle the
problems of VNF placement and SFC routing under multiple
resource and QoS constraints. Nguyen et al. [15] also aim to
minimize the resource usage cost by efficiently placing and
chaining the VNFs of Cloud-based IoT SFCs that span across
multiple Edge-Cloud infrastructures. To do so, two algorithms
are proposed, a customized Markov approximation and a node
ranking-based heuristic, to produce a near optimal solution.

A slightly different optimization objective is defined in
[16], where the authors aim at minimizing the energy con-
sumption in the infrastructure together with the resource
utilization during SFC deployment; the proposed algorithm
deals dynamically with the incoming SFCs and manages to
decrease the number of required open servers, while at the
same time reduce their idle energy consumption. Another work
on energy consumption minimization during SFC embedding
is presented in [17], where the authors propose a heuristic
resource and energy-aware SFC strategy in an Edge–Cloud
environment. Their algorithm comprises of three main proce-
dures: the Edge/Cloud offloading decision, the VNF mapping
and the virtual link mapping. Similarly, Xu et al. [18] devise a
heuristic approach, based on integer linear programming (ILP)
to linear programming relaxation, for the VNF placement
problem, while Yue et al. [19] come up with a heuristic that
utilizes shareable VNF instances to find a solution for their ILP
problem. A Tabu Search meta-heuristic is proposed in [20] to
solve the mixed integer programming problem of minimizing a
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multi-variate objective function. The target here is to optimize
the end-to-end communication delay while keeping the cost
minimum during the placement and deployment of service
chained VNFs in an Edge-Cloud infrastructure.

Although the problem of VNF/SFC placement seems fairly
well-studied in the literature with various optimization goals,
none from the above works pay attention to the in-depth
CPU allocation and its impact on the overall efficiency of
the placement solution. However, studies performed on the
characterization of individual VNF performance, showed that
the NUMA architecture can cause performance degradation,
when a poor CPU allocation decision is taken [21]. This has
prompted us to investigate further the impact of NUMA on
the system performance in general and on the efficiency of
the SFC placement in particular.

B. Impact of NUMA allocation

In a typical NUMA system, a given CPU accesses the local
RAM faster than a remote one on another NUMA node, hence
the non-uniform access attribute. This is mainly due to the
signal path length from a CPU core to a given memory block
and it plays a significant role in the system performance; a
large path leads to higher RAM access time and the more
it is shared between different CPUs, the more prone it is
to throughput and delay bottlenecks. This leads to noticeable
impacts on the performance of large-scale systems [22].

Kim et al. [23] measured the average data access latency
of VMs in a four-node NUMA machine and investigated
the induced delay. Their findings show that latency tends
to increase with the use of a memory block that is not
directly attached to the core, with the access of the memory
of a remote NUMA node and the use of the interconnection
paths between NUMA nodes. Following that lead, authors
in [24] investigated the impact of thread mapping on the
performance and energy consumption for parallel applications
on modern NUMA systems. Particularly, their efforts focused
on optimizing the memory access in order to take advantage
of the local access, while at the same time not overload
it and avoid performance degradation due to local memory
congestion. Results showed that a proper mapping can reduce
the execution time by up to 23.8%. A reduction of 14.6% in
energy consumption is also achieved.

Additionally, in [6], the authors investigated the interaction
between NUMA and remote direct memory access through the
network interface card, the performance of which is affected
by the NUMA locality of the targeted node and its workload.
The results showed that overloading the target node can lead
to bandwidth degradation of up to 20% for simple atomic
memory read operations, and up to 50% when the entire
memory is accessed, meaning that twice the speedup can be
achieved by directing operations to unburdened NUMA nodes.

These studies highlight the significant impact of the NUMA
node selection within a server and how it can speed up
the memory access time if chosen properly. However, the
evaluation was limited to cases of data flow processing of
some very specific applications. The general case of more

complex functions like VNFs was not investigated, nor the
case of chaining several functions like SFCs. In this direction,
a recent study [7] has proposed a solution of VM consolidation
that focuses on reducing the number of activated servers and
the number of VM migrations to achieve that in the context of
NUMA system. Their approach, using a Modified Grey Wolf
Algorithm, optimally selects NUMA nodes within servers with
the objective to reduce energy consumption by reducing the
number of activated servers and VM migrations. However,
no interdependency among the VMs is assumed (like in an
SFC-enabled environment). This motivates our exploration to
understand the impact of CPU core allocation on reducing
processing delays during SFC placement.

C. Impact of CPU core allocation

In the VNF/SFC placement context, Papathanail et al. in
[8] highlight the -often overlooked- performance importance
of fine-grained CPU selection as complementary to server
selection. To this end, different scenarios of SFC spanning
across multi-core systems are investigated, with diverse re-
source profiles, and the following points are made: i) for higher
data rate, allocating cores from the same NUMA node leads
to higher throughput, ii) allocating heterogeneous workload
(e.g., CPU- vs. memory-intensive tasks) to the same core
leads to higher throughput than allocating a homogeneous one
and iii) more than two VNFs sharing the same core leads
to throughput degradation. Similarly, authors in [9] pinpoint
the importance of fine-tuned placement to the level of exact
CPU core allocations. They propose an algorithm that can
predict performance degradation and optimize core allocation,
achieving an overall higher throughput for incoming SFCs,
and compared to random core allocation, an improvement in
system throughput by 39.2%.

Still, for both these works the optimization criteria is system
throughput and end-to-end delay minimization is not taken
into account. Additionally, these particular works mainly focus
only on an intra-server scenario, without considering multiple
SFCs to be placed in large Edge-Cloud infrastructures, and
without considering any location constraints and hardware
heterogeneity that may arise in such Edge/Cloud interplay.
Table I presents a comprehensive comparison between the
literature and the proposed solution.

III. SYSTEM MODEL

A. Server architecture

Memory access can be a bottleneck for the processor
performance. That is why, in modern computer architectures,
a hierarchical cache system is implemented, which bridges
the gap between CPU and the constant lookups in the remote
RAM. According to [25], the most popular hierarchy system
that has been adopted by modern microprocessor designs is
the three-level cache system; this dictates the use of smaller
and faster level one (L1) and two (L2) caches which are kept
private and in closer proximity to CPU cores, and a larger
level three (L3) cache which is shared between all cores. L2
cache, however, can be also shared between two consecutive
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TABLE I: Comprehensive comparison between the literature and the proposed solution.

Article Optimization Objective Provisioning Use of NUMACost Resource utilization Delay Bandwidth Energy Implicit Explicit
Leivadeas et al. [20] ✓ ✓ ✓ ✓
Nguyen et al. [15] ✓ ✓ ✓
Xu et al. [18] ✓ ✓
Deng et al. [10] ✓ ✓
Kiran et al. [12] ✓ ✓ ✓
Sun et al. [16] ✓ ✓ ✓
Thanh et al. [17] ✓ ✓ ✓
Yue et al. [19] ✓ ✓
Magoula et al. [13] ✓ ✓
Liu et al. [14] ✓ ✓
Forti et al. [11] ✓ ✓ ✓
Diamanti et al. [4] ✓ ✓ ✓ ✓
Kim & Park [23] ✓ ✓ Node
Hu et al. [7] ✓ ✓ Node
Papathanail et al. [8] ✓ ✓ CPU core
Yu et al. [9] ✓ ✓ CPU core
DySCo ✓ ✓ ✓ ✓ ✓ CPU core

CPU cores, as shown in Fig. 2 for an example of 8 CPU cores
spread in two NUMA nodes.

Kim in [23] detailed how such a hierarchy works in a
NUMA server: when a CPU core requests to access data stored
in the memory, first the L1 cache is checked and then L2. If
the data is not there, then the shared L3 cache and the RAM
of the same NUMA node are checked and subsequently those
of the remote NUMA nodes. To model this operation in a
three-level cache server, we introduce a penalty concept that
represents the cost of fetching data from the memory for a
CPU core. Based on the works of [23] and [25], we define the
following cases of penalty values, also illustrated in Fig. 3:

• 1st case: The requested data are present on private cache
L1 or L2; this introduces no penalty, given the direct and
fast access to the data. Thus, a penalty value equal to zero
is assigned to the communication between two adjacent
CPU cores.

• 2nd case: The requested data are present on the L3 cache
or the RAM of the local NUMA node; this adds a data
access penalty p > 0. This penalty is inflicted due to
contention on the shared cache and memory controller
and is assigned to the communication between two non-
adjacent CPU cores belonging to the same NUMA node.

• 3rd case: The requested data are present in a remote
node; this adds a penalty Q > p, for crossing the
interconnection between NUMA nodes and is assigned
to the communication between two CPU cores belonging
to different NUMA nodes.

Fig. 2: Cache sharing for 8 cores spread in 2 NUMA nodes.

B. Infrastructure

We model the Edge-Cloud infrastructure as an undirected
graph G = (N,V ), where N represents the set of servers
and routers (set of nodes) and V the set of vertices/links that
interconnect them. In more detail, the nodes are categorized
into two types: i) the servers S ⊂ N that host the VNFs and
ii) the routers F ⊂ N that forward the traffic. It stands that
S ∪ F = N . We also identify two server subsets, depending
on their location, i.e., the Edge SE ⊆ S and the Cloud
SC ⊆ S, with SE ∪ SC = S. Each server s ∈ S is
attributed with a number of available NUMA nodes Bs and a
vector of available resources Rs, in our case consisting of
CPU cores Hs and RAM Memory Ms, Rs = (Hs,Ms).
Furthermore, each link (u, v) ∈ V is characterized by a
bandwidth capacity ρ(u, v) and a propagation delay dpr(u, v).
To accommodate the penalty design introduced in the previous
subsection, we define a penalty matrix Ps where Ps(j, j

′)
represents the penalty for the communication between cores
j and j′ ∈ 1, ...,Hs, j ̸= j′, of server s ∈ S. If we consider
the server in Fig. 2 as an example, its corresponding penalty
matrix would be of size 8× 8 as illustrated in Table II.

An SFC consisting of K interconnected (linearly or bi-
furcated) VNFs, is represented as an ordered set A =
(a1, a2, ..., aK), where ak, k = 1, ...,K, denotes the k-th VNF
in the chain. Each VNF is attributed with a vector of demands
Dk, which consists of the requested CPU cores hk and RAM
mk. Also, each VNF has a location constraint Lk indicating
an Edge-only, Cloud-only, or location-indifferent allocation.
Finally, each SFC A has a bandwidth requirement, ϕA. Table

TABLE II: Ps for 8-core server with 2 NUMA nodes.

CPU core 1 2 3 4 5 6 7 8
1 0 0 p p Q Q Q Q
2 0 0 p p Q Q Q Q
3 p p 0 0 Q Q Q Q
4 p p 0 0 Q Q Q Q
5 Q Q Q Q 0 0 p p
6 Q Q Q Q 0 0 p p
7 Q Q Q Q p p 0 0
8 Q Q Q Q p p 0 0
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Fig. 3: Penalty for communication between CPU cores.

TABLE III: Summary of the Key Notation.

Symbol Interpretation
G = (N,V ) Infrastructure Graph (nodes, links)
S, F Set of servers and routers
SE , SC Set of Edge and Cloud servers
sEn , sCn The n-th server of SE or SC

b ∈ Bs NUMA nodes of server s ∈ S
Rs Available resources [cores,GB] of server s ∈ S
Hs No. of available physical cores in server s ∈ S
Hb No. of available physical cores in NUMA node b ∈ Bs

(u, v) A physical link ∈ V
ρ(u, v) Available bandwidth (Mb/s) of link (u, v) ∈ V
Ps(j, j′) Penalty for communication between physical cores j, j′

ak ∈ A The kth VNF of SFC A
AE , AC Set of VNFs with Edge and Cloud location constraints
Dk Requested resources [cores,GB] of VNF ak ∈ A
hk No. of requested CPU cores of VNF ak ∈ A
Lk Location requirement of VNF ak ∈ A
ϕA Bandwidth (Mb/s) requirement of SFC A
θb Priority factor of NUMA node b ∈ Bs

Θs Priority factor of server s ∈ S

III summarizes the key notation used in our modeling.

IV. ALGORITHM DESIGN

A. Mixed Integer Programming Formulation

In order to solve optimally the VNF Placement problem,
while taking into consideration both the NUMA nodes and
the individual cores, we need to address the following two
design challenges: i) restrict the allocation of the virtual cores
of a specific VNF in the physical CPU cores of the same server
and ii) ensure that this server is the one where said VNF has
been placed in. Thus, we introduce the following variables:

• xak,i
s,j : binary variable equal to 1, when the ith core of

a VNF ak ∈ A is allocated to the jth physical core on
server s ∈ S.

• yak
s : binary variable equal to 1 when the VNF ak ∈ A is

allocated on server s ∈ S.
• z

akak′
uv : integer variable equal to the traffic (bps) that flows

between two interconnected VNFs ak, ak′ ∈ A, if that
virtual link is routed over the physical link (u, v) ∈ V .

With our placement solution we aim firstly, to optimally
leverage the NUMA’s hierarchical structure, that as shown
in Section II can considerably reduce the processing delay
overheads, and secondly reduce the total bandwidth consumed
in order to reduce the deployment cost [2]. Thus, we formulate

the problem of SFC allocation in an Edge-Cloud infrastructure
with the following objective function:

min
x,z

∑
ak∈A,
hk≥2

hk∑
i=2

i−1∑
i′=1

∑
s∈S

Hs∑
j=2

j−1∑
j′=1

⌊
xak,i
s,j + xak,i

′

s,j′

2
⌋ · Ps(j, j

′)

+
∑
ak∈A

∑
ak′∈A

∑
(u,v)∈V

zakak′
uv . (1)

Here, the first term represents the penalty of how far the
allocated CPU cores to a VNF are, as explained in Table
II. In this first term, we only consider requests with more
than two CPU cores that will create a communication between
their respective memory blocks. Note that the floor operator

in ⌊
x
ak,i

s,j +x
ak,i′

s,j′

2 ⌋ gives a value equal to 1 only when xak,i
s,j =

xak,i
′

s,j′ = 1, otherwise it gives 0. In other words, the penalty
Ps(j, j

′) is counted in the sum only when server cores j and j′

are both occupied respectively by the virtual cores i and i′ of
the VNF ak, where i, i′ ≤ hk. By minimizing the penalties,
the allocation of adjacent cores is rewarded, which leads to
better NUMA node allocation and consequently will lead to
lower processing delays and CPU to memory communication
overheads. The second term tries to minimize the consumed
bandwidth in the physical infrastructure, i.e., the number of
hops in a path that interconnects two adjacent VNFs, favoring
this way the VM consolidation. This ultimately also minimizes
resource utilization and reduces deployment costs. In this
system, we also identify the following constraints:

hk∑
i=1

Hs∑
j=1

xak,i
s,j = hk · yak

s ,∀ak ∈ A,∀s ∈ S, (2)

∑
ak∈A

hk∑
i=1

xak,i
s,j ≤ 1,∀s ∈ S, ∀j ∈ {1, ...,Hs}, (3)

Hs∑
j=1

xak,i
s,j ≤ 1,∀ak ∈ A,∀s ∈ S,∀i ∈ {1, ..., hk}, (4)∑

s∈S

yak
s = 1,∀ak ∈ A, (5)∑

f∈F

yak

f = 0,∀ak ∈ A, (6)∑
ak∈A

yak
s = 0,∀s ∈ S, s /∈ Lk. (7)
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Constraint (2) makes sure that the number of requested cores
is equal to the number of utilized cores in the server. In other
words, that no requested core has been left out during the
allocation. Constraint (3) ensures that each physical core in
a server will host at most a single virtual core from a VNF.
On the other hand, constraint (4) guarantees that each VNF
core is allocated to at most one server core. At the same time,
constraint (5) ensures that each VNF will be allocated in only
one server and constraint (6) that no VNF will be allocated in
a router. Constraint (7) satisfies the location requirements.

Additionally, we need to ensure that the servers’ resources
(CPU and memory) will not be oversubscribed. Thus, we
introduce the following constraint:∑

ak∈A

Dk · yak
s ≤ Rs,∀s ∈ S. (8)

Finally, regarding the interconnection of the VNFs in an SFC,
we have the following constraints:∑

ak∈A

∑
ak′∈A,
k′>k

(zakak′
uv + zakak′

vu ) ≤ ρ(u, v),∀(u, v) ∈ V, (9)

∑
v∈N

(zakak′
uv − zakak′

vu ) = ϕA · (yak
u − yak′

u ),

∀ak, ak′ ∈ A,∀u ∈ N. (10)

Constraint (9) ensures that capacities of the links are respected,
whereas constraint (10) represents the flow conservation con-
straint between the source and the sinks of the virtual links.

Reformulating the optimization problem: To eliminate the
non-linear floor operator in Eq. (1), we introduce the binary
variable cak,i,i

′

s,j,j′ , which is subject to the following constraints:

0 ≤ cak,i,i
′

s,j,j′ ≤ 1, (11)

cak,i,i
′

s,j,j′ ≤ xak,i
s,j , (12)

cak,i,i
′

s,j,j′ ≤ xak,i
′

s,j′ , (13)

xak,i
s,j + xak,i

′

s,j′ − 1 ≤ cak,i,i
′

s,j,j′ . (14)

Effectively, cak,i,i
′

s,j,j′ is equal to ⌊
x
ak,i

s,j +x
ak,i′

s,j′

2 ⌋ and thus,
cak,i,i

′

s,j,j′ = 1 when xak,i
s,j = xak,i

′

s,j′ = 1. Therefore cak,i,i
′

s,j,j′

represents the simultaneous double occupation of CPU cores j
and j′ of server s by the virtual cores i and i′ of VNF ak. This
allows us to reformulate the objective function (1) as follows:

min
c,z

∑
ak∈A,
hk≥2

hk∑
i=2

i−1∑
i′=1

∑
s∈S

Hs∑
j=2

j−1∑
j′=1

cak,i,i
′

s,j,j′ · Ps(j, j
′)

+
∑
ak∈A

∑
ak′∈A

∑
(u,v)∈V

zakak′
uv . (15)

Subsequently, the optimization problem at hand is transformed
to the following Mixed Integer Linear Program (MILP):{

min (15),
s.t. constraints (2) to (14).

B. Heuristic

In general, the VNF/SFC placement problem is known in
the literature to be an NP-hard problem [10] [12] [15]. This
means that the execution time of a MIP solver increases
exponentially with the size of the infrastructure, hence the
importance of heuristic algorithms which can provide near-
optimal solutions in much faster time, without being impacted
by the infrastructure size, is evident. Thus, we present the
“Dynamic numa node Selection through Cores consolidation
- DySCo” algorithm, our SFC placement heuristic solution.
DySCo allocates the incoming SFCs sequentially, focusing on
individual service, real time optimization, enabling in this way
quick adaptation to dynamic network conditions and flexibility
in cases where SFCs are requested and released frequently. Its
operation is broken down to three steps: 1) Server classifica-
tion, 2) VNF classification and 3) SFC deployment.

1) Server Classification: We introduce the term block to
denote a pair of consecutive available CPU cores, in a server
s ∈ S, that share the same L2 cache, and anti-block to denote a
pair of consecutive CPUs, that share the same L2 cache, with
exactly one available core. We define then a priority factor
θb for each NUMA node of that server (or NUMA “socket”,
assuming that the number of NUMA nodes is equal to the
number of sockets) b ∈ Bs, calculated as the sum of the
number of available CPU cores and the number of blocks of
CPU in that NUMA node:

θb = availableCores(b) + blocks(b). (16)

Additionally, we introduce the priority factor for a server Θs,
s ∈ S, which is given by the sum of the priority factors of its
NUMA nodes:

Θs =
∑
b∈Bs

θb. (17)

During this step, the sets containing the Edge and the Cloud
servers, SE and SC respectively, are sorted in a descending
order according to their servers’ Θs, which essentially priori-
tizes one server over another when both have the same number
of available CPUs, but one has more blocks than the other.
Having more blocks is equivalent to having more consecutive
available cores and, therefore, favoring communication with
lower penalty and thus processing delays.

2) VNF Classification: In this step, we classify each VNF
of an incoming SFC request, ak ∈ A, based on their location
constraints, Lk; VNFs with Cloud or Edge requirements are
placed accordingly, while VNFs with no location constraints
are placed at the Edge, only if they are directly connected
to VNFs with Edge requirements, otherwise, they are placed
at the Cloud. By doing so, we minimize the number of
hops between the different VNFs of an SFC spanning across
the Edge and Cloud. This reduces the delay and bandwidth
consumption, leading eventually to a reduction in the cost of
deployment, as we also reduce the number of links utilized
and the use of the Edge infrastructure in general. This can be
beneficial, since resources at the Edge may be more scarce
and more highly requested leading also to higher operational
expenses [26]. This step outputs two sets containing the VNFs
that are to be placed at the Edge or the Cloud, AE ⊆ A and
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(a) Anti-Block Allocation (1) (b) Anti-Block Allocation (2)

(c) Block Allocation (1) (d) Block Allocation (2)

Fig. 4: Block Allocation and Anti-Block Allocation
Scenarios.

AC ⊆ A respectively, where AE ∪ AC = A. Finally, we
sort the lists in a descending order, based on the number of
requested CPU cores of each VNF, hk.

3) SFC Deployment: Before we dive into solving the
SFC placement problem, we demonstrate the basic case of
a single VNF deployment, ak ∈ A. To accommodate this
procedure, we introduce two elementary functions, namely
Block Allocation(i, i′) and Anti-Block Allocation(i). The
former allocates two VNF cores, i and i′ ∈ 1, ..., hk, to the
first available block in the NUMA node; if there is no block
available, then it allocates them to the first available two cores.
On the other hand, the latter allocates a single VNF core i
to the first available anti-block, or to the first available core
if no anti-block is available. Fig. 4 illustrates an example of
how these functions allocate VNF cores on different server
configurations. We then combine these functions to a single
algorithm called CoreAllocation(hk, b) (Algorithm 1). This
procedure is responsible for allocating the requested hk cores
of VNF ak to NUMA node b. In a nutshell, Algorithm 1 tries
to iteratively allocate pairs of VNF cores in adjacent blocks in
a server, as much as possible, in order to reduce the induced
penalty. Any remaining single core is allocated in an anti-
block (if available), favoring in this way CPU consolidation
instead of “breaking” an empty block that can be used for
future allocations. Hence, the CoreAllocation algorithm can
be applied and generalized for any number of requested CPU
cores from a VNF, either even or odd.

Having established the placement procedure for a single
VNF, we move forward to explaining the entire SFC A
placement solution. For this procedure, DySCo operates in
two sequential steps: i) placing VNFs to the Edge and then ii)
placing VNFs to the Cloud.

i) Edge Allocation: Let sE1 be the first server on the SE set.
It represents the Edge server with the highest priority factor,
i.e., the best candidate for the VNF placement. Depending on
its number of available CPU cores HsE1

, DySCo can either fit
all the VNFs of the AE in it (Single Server Allocation - SSA),

Algorithm 1 CoreAllocation

Input: hk, b
1: i← 1
2: while i ≤ hk do
3: if (i < hk) then
4: i′ ← i+ 1
5: Block Allocation(i, i′)
6: i← i+ 2
7: else
8: Anti-Block Allocation(i)
9: i← i+ 1

10: end if
11: end while

Algorithm 2 SSA

Input: AE , s
E
1

1: for all (ak ∈ AE) do
2: get (bm, Hbm) and (bM , HbM ) from sE1
3: if (hk > HbM ) then /* Multi-NUMA node */
4: while (hk > Hbm ) do
5: get (bM , HbM )
6: CoreAllocation(HbM , bM )
7: hk ← hk −HbM

8: end while
9: if (hk ̸= 0) then CoreAllocation(hk, bm)

10: end if
11: end if
12: if (hk ≤ Hbm ) then /* Single-NUMA node */
13: if (hk == 2 AND Hbm == 2) then
14: if (bm has block) then
15: CoreAllocation(hk, bm)
16: else CoreAllocation(hk, bM )
17: end if
18: else CoreAllocation(hk, bm)
19: end if
20: end if
21: if (Hbm ≤ hk ≤ HbM ) then CoreAllocation(hk, bM )
22: end if
23: end for

or more servers are needed (Multi Server Allocation - MSA).
In the case when SSA is feasible (Algorithm 2), we first sort

the NUMA nodes b ∈ BsE1
by their priority factor θb. Then,

we select two specific NUMA nodes as follows: bm, which
is the NUMA node with the lowest θb and bM , which is the
NUMA node with the highest θb respectively. Additionally, we
denote by Hbm and HbM the number of their available cores.
Depending on the number of requested CPU cores hk of VNF
ak ∈ AE and the availability on bm and bM , DySCo allocates
it into sE1 . The case in line 13 of the SSA pseudo-code, helps
in further optimizing the resource allocation by finding a trade-
off between allocating at an already-utilized NUMA node for
resource consolidation and between allocating at a non-utilized
NUMA node to reduce penalties. An example is illustrated in
Fig. 5. For a partially utilized NUMA node, the SSA algorithm
will prefer to use it if there is a block of CPU cores that share
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TABLE IV: Configurations of the different Infrastructure, Servers and VNFs/SFCs.

Type
Infrastructure size Server’s characteristics

Small Medium Large RAM Storage NUMA CPUs
nodes per node

Cloud 3 6 9 256 GB 2 TB 2 12 or 24
Edge 9 18 27 64 GB 1 or 2 8

VNF’s characteristics SFC’s characteristics
Requested RAM Bandwidth Number
CPU cores (Mb/s) of VNFs

2, 3 or 4 4 or 10, 20, 50 2 - 58 GB 60, 70 or 80

Fig. 5: Enhancing consolidation during the SSA algorithm.

Algorithm 3 MSA

Input: AE , SE

1: calculate (sE2 , ..., s
E
n+1)

2: for all (ak ∈ AE) do
3: get (sm, Hsm) and (sM , HsM ) from (sE2 , ..., s

E
n+1)

4: if (hk ≤ Hsm ) then SSA(ak, sm)
5: end if
6: if (Hsm < hk ≤ HsM ) then SSA(ak, sM )
7: end if
8: end for

the same L2 cache. This will enhance the consolidation and
reduce the penalties. Yet, if the two cores requested belong to
two anti-blocks, then the L3 cache will be used, which will
incur more penalty. Thus, in the latter case it will be more cost-
efficient to use the second NUMA node, which is idle but has
more consecutive blocks. After placing ak, the variables bm,
Hbm , bM and HbM are recalculated before proceeding to ak+1.
This adds a dynamic aspect to the NUMA node selection and
optimization at each iteration.

In the case of MSA (Algorithm 3), since multiple servers

Fig. 6: DySCo Information and Control Flow.

are needed to host the VNFs of AE , we sort the Edge servers
in a descending order based on their distance in number of
hops from sE1 . Then, we select the closest n servers with
enough capacity to accommodate the VNFs of AE , creating
the set (sE2 , ..., s

E
n+1). We denote as sm and sM , the servers

of this set with the lowest and the highest priority factors Θs

respectively and as Hsm , HsM the number of their available
cores. Similarly to the SSA procedure, each VNF ak ∈ AE is
placed sequentially to a server, by comparing hk, Hsm , and
HsM . The actual placement is performed on the selected server
using Algorithm 2. After placing ak, the variables sm, Hsm ,
sM and HsM are recalculated before proceeding to ak+1. This
procedure is iterated until all the VNFs of AE are placed.

ii) Cloud Allocation: The procedure of placing VNFs at the
Cloud is the same as that at the Edge; we simply replace AE

with AC and SE with SC and follow the same steps.
The operation flow of DySCo is given in Algorithm 4, while

Fig. 6 illustrates the relationships and control mechanisms
among the building algorithmic components. In the latter, the
ability to execute parts of the mechanism in parallel is evident.

Algorithm 4 DySCo

Input: G, SFCrequests

1: for all A ∈ SFCrequests do
2: (SE , SC) ← 1) Server Classification
3: (AE , AC) ← 2) VNF Classification
4: if (

∑
ak∈A Dk >

∑
s∈S Rs) then reject A

5: else /* 3) SFC Deployment */
6: /* i) Edge Allocation */
7: if (AE ̸= ∅) then
8: if (

∑
ak∈AE

Dk ≤ RsE1
) then SSA(AE , s

E
1 )

9: else MSA(AE , SE)
10: end if
11: end if
12: /* ii) Cloud Allocation */
13: if (AC ̸= ∅) then
14: if (

∑
ak∈AC

Dk ≤ RsC1
) then SSA(AC , s

C
1 )

15: else MSA(AC , SC)
16: end if
17: end if
18: end if
19: end for

V. PERFORMANCE EVALUATION

A. Experimental set up and simulation scenarios

In this section, we assess the performance of DySCo. For the
evaluation we conducted simulations on three different sizes
of infrastructure: “Small” (3 Cloud Nodes & 9 Edge Nodes),
“Medium” (6 Cloud Nodes & 18 Edge Nodes), “Large” (9
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Cloud Nodes & 27 Edge Nodes). The specifications of the
different servers for each infrastructure are summarized on
the first part of Table IV.

To better stress the system under realistic real world scenar-
ios, we performed two families of experiments: the first aims
at studying the dynamics of resource allocation with SFCs
arriving and departing the system according to the clients’
demands (Dynamic Setting). The requests’ arrival rate follows
a Poisson distribution with a rate of 4SFCs/hour, and their
departure is set by an exponential distribution with an average
of 24h. In the second family of experiments, the incoming
SFCs remain allocated in the infrastructure throughout the
entire execution of the algorithm (Static Setting). This al-
lowed us to evaluate DySCo performance in a more static
environment that offers fewer and fewer available resources to
each new SFC request. Throughout the experimentation, the
SFC requests arrive sequentially and are treated one by one.
The specifications of the SFCs and their VNFs is provided
in the second part of Table IV. It should be noted, that these
specifications have been based on real data presented in [27].

B. Comparison algorithms

To evaluate the performance of DySCo, we compare it
to the optimal solution of the MIP, as well as with two
other SFC placement algorithms: the First Fit (1stFit) and
the Hybrid Heuristic Grey Wolf Algorithm (HHGWA) [7].
1stFit is a baseline algorithm that greedily chooses the first
available server, and then picks the first available CPU core
of the first available NUMA node within the server to host
the VNFs’ cores. On the other hand, the HHGWA is a VM
consolidation solution proposed by Hu et al. [7] to optimize
the NUMA node selection for each VM allocation, in order to
reduce the total number of utilized servers. This algorithm
is selected as it follows a novel approach for optimizing
NUMA nodes selection within each candidate server prior to
hosting a VM. Although HHGWA does not consider SFC-
like interdependencies among VMs, to our knowledge it is the
closest work in the literature that optimizes placement down
to NUMA node selection in a large-scale infrastructure and
not in an intra-server setting.

In more detail, HHGWA is based on the Grey Wolf Algo-
rithm [28] to select the best candidate servers to host the VMs.
First, it sorts the VMs by their average request ratio, i.e., the

ratio between the average amount of requested resources of
each type and the available capacity of this type on the server.
The VM with the highest average request ratio is prioritized
during the placement. Similarly, the selection of NUMA nodes
within the candidate servers is made by sorting them using
another ratio, that of remaining resources utilization, in order
to balance the load between the different NUMA nodes within
a given server. Then, the HHGWA proceeds to match and
place the sorted VMs with the sorted NUMA nodes, and any
VM that failed to be allocated at this stage will be added
to a queue for a subsequent reallocation step. To make the
comparison between HHGWA and DySCo fairer, the following
modifications were made:

• We introduced location constraints to the VM placement
in HHGWA, as the authors in [7] did not consider an
Edge-Cloud infrastructure for their solution.

• Following the allocation of the VNFs of a SFC, a shortest
path algorithm is used to interconnect them, since the
notion of SFC was not considered in the initial version
of the algorithm.

Table V summarizes the different algorithms used for the
comparison. We should also note here that all the algorithms
were implemented in a Java-based simulator [2], while the
CPLEX library was used for the MIP solution. Every exper-
iment/measurement was repeated 10 times, changing a seed
value that leads to slightly different infrastructure and VNF
characteristics, following always the range of values provided
in Table IV.

C. Results

1) Dynamic Scenario: In this family of experiments, we
used the small infrastructure and 10 SFCs, while the results are
illustrated in Fig. 7. As explained above, we run ten different
tests for each algorithm and at each iteration, we only change
the SFC and the server characteristics. After each test, we
extract the average value of each metric under evaluation,
for all the SFCs. Then we average all results for the ten
different tests and plot the final values. The reason we first
performed such a small-scale evaluation, is because we wanted
to have a direct comparison with MIP, which was proved to
be intractable for larger scale scenarios.

Fig. 7a showcases the objective cost for each algorithm,
which consists of the sum of the penalties between the differ-

TABLE V: Summary of the compared algorithms.

Algorithm steps 1stFit HHGWA DySCo MIP
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(a) Objective Cost (b) Penalty (c) Links Utilized in Total (d) Servers Utilized per SFC

(e) Maximum Free Distance (f) Propagation Delay per SFC (g) Execution Time per placement

Fig. 7: Dynamic Scenario Evaluation: Small Infrastructure, 10 SFCs.

ent utilized cores, plus the consumed bandwidth on the links,
as defined in Eq. (15). The total penalties are also highlighted
in Fig. 7b. As we see, DySCo performs the closest to the
optimal solution (MIP) in terms of objective cost, followed
by HHGWA and then 1stFit. When it comes to the penalty in
particular, DySCo outperforms all the compared algorithms,
even MIP. This is the result of the core consolidation mecha-
nism used by DySCo, which favors allocation by blocks, while
avoiding anti-blocks as much as possible, to reduce the CPU
to memory communication overheads. The MIP placement
yields a 13.6% higher penalty than DySCo, since it uses a
multi-objective function that not only optimizes the penalty,
but also the consumed bandwidth. In more detail, the MIP
potentially allocates SFCs in less attractive CPU core positions
compared to DySCo, if this allocation scheme provides a lower
overall objective cost. Similarly, since HHGWA has a goal to
optimize the NUMA node selection it also achieves a lower
penalty than MIP. However, the absence of a fine-grained CPU
block definition yields a 9.13% higher penalty for HHGWA
compared to DySCo. Finally, 1stFit scores the highest penalty
and objective cost because of the absence of any optimization
during NUMA node and CPU core selection.

Fig. 7c presents the total number of links (for all the
SFCs) and Fig. 7d the number of servers utilized per SFC
for the placement by each algorithm (results are averaged
over 10 simulation runs). The MIP uses a slightly higher
number of servers to deploy an SFC (1.59) compared to
DySCo that requires the least (1.47). However, it seems
that MIP performs better in routing optimization, as it uses
less links than DySCo overall. This comes as a reasonable

outcome, since MIP jointly solves the VNFs placement and
their interconnections, by selectively choosing complete SFC
embeddings over the infrastructure, rather than first allocating
VNFs and then finding their proper interconnections. DySCo
mainly emphasizes on the CPU consolidation that reduces the
overall penalty and the number of used servers. However,
indirectly, by selecting neighboring servers during the MSA
case, it tries to also reduce the number of links, attenuating
thus the gap with the optimal solution. In contrast, HHGWA
again falls short compared to DySCo, as although it optimizes
server and NUMA node selection, it does not leverage that
well the possible creation of anti-blocks for future SFCs as
DySCo does. This reflects in DySCo utilizing 16.84% less
links and 25.38% less servers than HHGWA respectively.
Finally, the lack of any CPU allocation optimization during
the placement results in the 1stFit algorithm performing the
worst.

To investigate further the performance of the CPU cores
consolidation mechanism used by DySCo, we devise a metric
called Maximum Free Distance (MFD). This metric represents
the maximum number of consecutive available CPU cores
in a NUMA node (the higher the better). Higher distance
ensures higher availability to accommodate future VNFs,
which promotes server consolidation, and reduces the cost
of deployment. Fig. 7e shows the average MFD per server
for the compared algorithms. Once again DySCo outperforms
the others by scoring the highest MFD (7.74), followed by
MIP (6.88). HHGWA comes third, while 1stFit once more
give the worst results in terms of MFD. Moving on to the
evaluation of the average propagation delay achieved per SFC
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(a) Objective Cost (b) Penalty (c) Links Utilized in Total (d) Servers Utilized per SFC

(e) Maximum Free Distance (f) Propagation Delay per SFC (g) Acceptance Ratio (h) Execution Time per placement

Fig. 8: Dynamic Scenario Evaluation: Small-Medium-Large Infrastructure, 15− 105 SFC Requests (Scalability).

(Fig. 7f), the MIP comes out on top. As already noted, MIP
optimizes the routing between the different VNFs of a given
SFC thus uses the least number of links with the shortest
distance, which results in the lowest delay. DySCo adds a
couple of ms compared to the optimal, followed by HHGWA
(twice than the optimal) and 1stFit (three times more than the
optimal). Specifically compared to HHGWA, DySCo achieves
a 34.2% lower propagation delay.

Finally, Fig. 7g illustrates the average execution time per
SFC placement, in a logarithmic scale. As expected, the MIP,
having the highest computational complexity, needs 283.62s
on average to place a single SFC. On the other hand, the
greedy 1stFit is the fastest one taking only 0.54ms. DySCo
goes hand in hand with the greedy solution (0.7ms), while
HHGWA takes around 5.29ms, which is still fast compared
to the MIP, but 7.5 times slower compared to DySCo, due to
the increased complexity of the Grey Wolf algorithm.

Since we have established the positioning of DySCo and
the benchmarking algorithms with respect to MIP, we then
investigate the scalability of DySCo under various network
loads and infrastructure sizes. To do so, we generate a work-
load between 15 to 105 SFCs, with a step of 15. We execute
seven iterations for each algorithm and each workload setting,
only changing the characteristics of the servers and SFCs
per iteration, randomly, from a predefined set as in Table
IV. We then average the obtained metrics. The same set
of experiments is repeated for the three infrastructure sizes
and the results are plotted in Fig. 8. We note here that the
MIP is excluded from this set of experiments due to its high
computational complexity which leads to intractable execution

times and memory requirements for large infrastructures and
high number of SFCs.

Fig. 8a illustrates the objective costs and Fig. 8b the
penalties as a function of the size of the infrastructure, for the
compared algorithms. Keeping up with the previous set of ex-
periments, 1stFit performs the worst due to the absence of any
resource allocation during the placement and its performance
deteriorates as the infrastructure size increases. Oppositely,
HHGWA shows an almost stable performance regardless of
the size. The explanation for that is that optimizing servers
and NUMA nodes guarantees a certain performance stability.
Naturally, DySCo showcases a stable performance throughout
the different sizes as well, and at the same time yields the
lowest penalty and objective cost. On average, DySCo achieves
a 17.53% lower objective cost compared to HHGWA and
70.01% lower than that of 1stFit. This highlights the capability
of the proposed core consolidation mechanism to ensure the
best stable performance regardless of the network size.

In terms of average total utilized links, as seen in Fig. 8c,
1stFit shows the highest increase when executed in a large
infrastructure compared to a small one, doubling the utilized
links from 14.24 to 29.72. On the other hand, HHGWA shows
a link increase close to 40%, while DySCo results in the lowest
one, 24.11%, which is also 39.72% lower than HHGWA. A
similar behaviour is demonstrated in the average number of
utilized servers per SFC (Fig. 8d). Again, 1stFit performs
poorly, with an increase rate of 16.26% between the small and
the large infrastructure. HHGWA and DySCo show an almost
stable performance regardless of the infrastructure size, with
DySCo using on average 21.87% less servers than HHGWA.
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(a) Acceptance Ratio (b) Objective Cost Analysis (c) Maximum Free Distance

(d) Delay Analysis (e) Servers Utilized per SFC (f) Links Utilized in Total

Fig. 9: Static Scenario Evaluation: Medium Infrastructure (Fixed), 15− 105 SFC Requests.

Fig. 8e showcases the MFD metric for each algorithm, for
the different infrastructure sizes. DySCo achieves double the
MFD attained by HHGWA and 1stFit; also, its MFD increases
with the infrastructure size and this shows that DySCo favors
the spread of the SFCs over the available servers providing
more available resources for the future placements. This is a
result of DySCo’s dynamic server selection, during which it
sorts them by their priority factor after each iteration, thus
boosting the load balancing in the infrastructure. In Fig. 8f
the average delay per SFC is illustrated. DySCo is again the
best algorithm of the three, scoring the lowest delay, followed
by HHGWA for which the average delay is 28.88% higher.
Additionally, both algorithms show almost stable behaviour
between the different infrastructure sizes, which highlights the
importance of resource consolidation in guaranteeing stable
performance. On the other hand, 1stFit fails to keep a consis-
tent delay per SFC as the infrastructure size increases.

Moving on, we investigate the capability of each algorithm
in successfully placing SFCs (“acceptance ratio”). As seen
in Fig. 8g, all algorithms achieve to accommodate every
incoming request for SFC placement in the medium and large
infrastructures. The results are more interesting in the case
of the small infrastructure, where the network resources are
not enough to accommodate all the requests. There, HHGWA
achieves the best ratio thanks to its server consolidation
technique, however the differences among the algorithms are
negligible. As shown in Fig. 8h, the slightly better acceptance
ratio for HHGWA comes with a price in its execution time per
SFC placement, which also increases with the infrastructure

size. This happens due to the increased complexity of the Grey
Wolf Algorithm. On the other side DySCo achieves signifi-
cantly faster execution times, similar to those of the greedy
1stFit, with 0.28ms and 0.26ms on average respectively, a
reduction of around 96% compared to HHGWA.

2) Static Scenario: For the second family of experiments,
we fix the infrastructure size to medium, and we assume
that SFCs arrive and remain in the infrastructure until the
end of each experiment. The MIP is again excluded for
reasons already stated. The results are plotted in Fig. 9 in an
incremental step of SFCs. Fig. 9a displays the SFC acceptance
ratio for each algorithm. As seen here, not all the incoming
SFC requests can be accommodated when they are more than
30 (infrastructure saturation point) and rejections begin to
occur. The compared algorithms show similar performance,
with DySCo being slightly better than the other two. In order
to visualize the variation of the objective cost as a function
of the number of SFCs, we plot the curve of the objective
function multiplied by the number of accepted SFCs in Fig.
9b. We see that the objective cost increases with the number
of allocated SFCs; this happens due to the increase in the
number of links and servers utilized in order to accommodate
a growing number of SFCs. DySCo manages to score the
lowest cost for all different tested number of SFCs, followed
by HHGWA and 1stFit, which once more performs the worst.

Fig. 9c illustrates the MFD, which decreases exponentially
for all the compared algorithms as the number of incoming
SFC requests increases, an expected behaviour as no SFC de-
partures take place. Like in the previous family of experiments,
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DySCo guarantees the best average MFD out of the three,
balancing the load more efficiently among the infrastructure’s
servers. A short delay analysis follows in Fig. 9d; here,
we display the cumulative delays of all SFCs multiplied by
the number of accepted SFCs, which allows for a crisper
illustration of the delay behavior for the three algorithms. Once
again, DySCo scores the lowest delays, followed by HHGWA,
with an increase of 15.18%, and then 1stFit.

In the final part of the evaluation, we compare the to-
tal number of servers utilized to place the SFCs and the
total number of links to interconnect them. In Fig. 9e we
notice between 30 (saturation threshold) and 60 incoming
SFC requests, the HHGWA uses the least number of servers
(7.57% fewer than DySCo and 1stFit). This is due to the main
objective of HHGWA which seeks to consolidate as many
servers as possible. However, the proposed core consolidation
mechanism ensures that DySCo performs on average very
close to HHGWA. Additionally, Fig. 9f shows that DySCo
utilizes the least number of links in total, compared to the
other algorithms; on average 8.12% less compared to HHGWA
and 19.46% less compared to 1stFit. This happens because the
server consolidation mechanism used by HHGWA, although
it manages to keep the total number of servers low, it causes
an increase in the number of utilized links, since it does not
pay attention in a multi-server allocation scenario which two
or more servers to interconnect. In contrast, DySCo utilizes
slightly more servers, but fewer links to interconnect them,
since neighboring servers will be usually selected.

D. Discussion
To summarize, after thoroughly evaluating the proposed

mechanism under different experiment families, we conclude
that DySCo dominates when compared to baselines from the
literature. Apart from performing close to the optimal solution
(MIP) in terms of objective cost achieved, the proposed
mechanism additionally manages to minimize the introduced
penalties and subsequently the deployment cost. This is a
reflection of two factors; first, the emphasis on CPU-core
consolidation, which significantly reduces the overall number
of utilized servers. Second, DySCo’s strategic approach to
server selection, which prioritizes neighboring servers, that
mitigates the number of links used. Notably, the improvements
extend beyond optimizing the resource utilization; the pro-
posed mechanism demonstrates close-to-optimal performance
in minimizing end-to-end delay for individual SFCs as well.
When it comes to its scalability, DySCo performs robustly
across various infrastructure sizes and workloads, achieving
the lowest and most stable utilization of links and servers,
while keeping the delay again minimum. As a byproduct, this
fine-grained server and core selection promotes load balancing
and ensures enough resources for future VNF placements,
while the system throughput is improved as well. Impressively,
DySCo achieves the above enhancements in a fraction of the
execution time reported by the competition.

VI. CONCLUSION

In this work, we propose DySCo, a novel VNF/SFC allo-
cation algorithm that optimizes not only the server selection,

but also the NUMA node selection and CPU core allocation
in it, in an Edge-Cloud setting. Our goal was mainly to
prioritize the use of L1 and L2 cache memories instead of the
L3 and remote RAM, which can add significant performance
bottlenecks. At the same time and as a secondary goal we
tried to reduce the end-to-end delay and the total bandwidth
consumption of the SFC and subsequently the deployment
cost. To evaluate the performance of the proposed solution,
we compared it to the optimal MIP case, as well as two other
algorithms: a greedy approach, called 1stFit and HHGWA, a
solution from the literature that also optimizes both the server
and the NUMA node selection. The results show that, due
to its CPU core consolidation mechanism, DySCo guarantees
performance stability even at large-scale infrastructures, while
performing close to the optimal and in real time.

As part of our future work, first we are planning to inves-
tigate the modeling of the NUMA nodes as an extension of
the network graph, which could potentially allow for adopt-
ing generic VNF placement techniques to enhance DySCo’s
performance. Then, we intent to assess the performance of
DySCo in a real-world environment, to better illustrate the
direct benefits of reducing the delay overhead and throughput
bottlenecks caused by a poor NUMA node and CPU core
allocation. Finally, aspects of resource utilisation prediction
through appropriate Machine Learning techniques will be
studied and incorporated to the proposed approach to further
improve its performance in the long term.
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