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Abstract—Network Function Virtualization (NFV) and Service
Function Chaining (SFC) have created a new, flexible, and
cost-efficient way of network service offering. Thus, Service
(SPs) and Infrastructure Providers (InPs) are updating their
product portfolio to incorporate these new technologies. However,
placing the network components, called Virtualized Network
Functions (VNFs), that constitute the network services on top
of the physical infrastructure creates several resource allocation
challenges. This paper offers a networking planning solution
tool for SP and InPs to allocate resources according to the
expected network demand appropriately. In particular, first, we
propose an offline and optimal solution that dimensions and
exactly allocates the physical resources according to the estimated
workload. Following, mispredicted offline solutions are corrected
by various online placement solutions that serve the network
workload according to the time of its arrival. Finally, to alleviate
any resource mismatch between the total capacity of the physical
network and the total requested resources of the expected SFCs,
a novel feasibility placement approach is proposed that provides
suggestions to the InPs on where to place additional resources.
Extensive experimentation shows that the proposed planning tool
can efficiently preallocate SFCs under different configuration
scenarios, while the feasibility restoration tool provides accurate,
timely, and cost-efficient remedy solutions for the InPs.

Index Terms—Service Function Chaining, Network Function
Virtualization, Network Planning, Feasibility Analysis, VNF
Placement

I. INTRODUCTION

The emergence of 5G and beyond networking, as well
as the proliferation of real-world Edge Computing settings,
allowed for realizing and supporting a wide range of new
applications and services, including the Internet of Things
(IoT), Virtual and Augmented Reality (VR/AR), as well as
autonomous vehicles among others. Along with them came the
necessity for providing higher data transfer rates and capacities
alongside lower latency in the client-server communication [1].
Towards accomplishing this necessity, one of the prominent
technologies that were developed with the next-generation
networks is Network Function Virtualization (NFV), which
enables previously hardware-bound network functions, such as
routing, switching, and security, to be virtualized and run on
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commodity hardware instead of dedicated appliances [2]. This
virtualization trend in networking, subsequently gave birth to
the Service Function Chaining (SFC) concept, which intro-
duced the chaining of multiple Virtualized Network Functions
(VNFs) together, in a specific order, to create a complete
service path [3]. When put together, NFV and SFC can provide
network operators with great flexibility and control over traffic
routing and service delivery.

However, the VNFs comprising the SFC should be appropri-
ately allocated over the physical infrastructure of the provider
by finding the necessary computational and communication
resources required for their functioning. For the latter, current
and next generation network paradigms are expected to lever-
age end-to-end solutions taking advantage of the resources
found in the recently introduced Edge Computing infrastruc-
ture and in the traditional Cloud one. Specifically, the industry
has self-adapted in various ways in response to the surge
in demand for resource-intensive applications at the network
edge. Edge computing has emerged as a primary solution for
reducing latency by bringing computation resources closer to
users. For instance, 5G network slicing aims to introduce
dedicated resources for end-to-end applications, which can
be decomposed into virtual functions while using the edge
infrastructure for more efficient processing. Moreover, the rise
of containerization and microservices has enabled dynamic
application scaling and resource allocation adjustments based
on real-time demand. Thus, a collaborative approach to edge
and cloud processing ensures a balance between rapid response
times and the power of centralized data centers [4]. Although
these innovations have considerably enhanced service delivery,
providing efficient resource planning and management remains
an ongoing challenge, especially for SFC deployment.

The particular resource allocation problem, which is called
VNF placement and SFC planning need a comprehensive
system model, where several key components and parameters
need to be identified. For instance, the system model should
include a detailed inventory that could be represented as a
network topology that includes the functional characteristics
of the physical computing and communication nodes as well as
those of their physical connections. Similarly, the SFCs can
be represented as service requests that specify the sequence
and topologies of their interconnected VNFs, their required
processing times, the CPU and memory requirements, any
latency and bandwidth constraints and so on. By having such
a detailed model the infrastructure providers and network
operators can find optimal VNF placements and robust SFC
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planning schemes.
These optimal placements and planning approaches depend

on the service requirements (e.g., 5G and IoT) and from the
capabilities of the infrastructure. Normally, an SFC-enabled
infrastructure should cater for performance, scalability, and
cost-efficiency optimization, together with resiliency and high
availability at all times. To provide such guarantees, proactive
and reactive network planning is required. In detail, the
Service and Infrastructure Providers (SPs and InPs) should
be optimally placing VNFs in their infrastructure to minimize
resource utilization, reduce the network latency, and increase
the overall network efficiency [5]. This kind of proactive
planning results in increased Service Level Agreement (SLA)
compliance, scalability, i.e., the network can accommodate
new services and users without any performance degradation,
while overprovisioning is avoided and the overall network
costs are reduced. However, planning the placement in ad-
vance, is not always accurate; misplanning in offline solutions
can be corrected using reactive, online mechanisms that allevi-
ate resource mismatches between the capacity of the physical
network and the requested resources of the expected SFCs [6].

In this article, we aim to address both proactive and reactive
network planning in a single planning tool for SPs and InPs,
which will facilitate the resource allocation in an online and
offline fashion respectively for an edge-cloud infrastructure,
according to the expected network demand. In detail, the
contribution of our work is fourfold:

• An offline, proactive SFC placement mechanism is pro-
posed that optimally allocates the physical resources of
the infrastructure according to the expected workload de-
mands. The objective of this allocation is to minimize the
number of edge servers utilized for the VNF placements,
as well as the communication cost, in terms of number
of links used to interconnect them. In order to avoid
computationally intractable situations, we propose two
heuristic algorithms for the solution of the formulated
Integer Linear Programming (ILP) problem.

• The offline mechanism is followed by an online, reactive
SFC placement mechanism, which corrects the potential
mispredictions in the incoming workload of the first step.
Three algorithms are proposed for this second step, which
take into consideration the arrival and departure times of
the SFCs, as well as the locations of the end-users that
make the requests.

• To give SPs and InPs a better insight into the potential
blocking causes for the SFC placement and a more
fine-grained way of solving them, a novel infeasibility
restoration mechanism is additionally implemented to
complement the offline SFC planning step; this mech-
anism alleviates the resource mismatches between the
total capacity of the infrastructure and the requested
resources of the expected SFC requests by providing
suggestions to the network operators on where to add
more resources. Three approaches are examined for this
component, which aim to minimize the induced capital
and operational expenses (CapEx & OpEx).

• Finally, through detailed numerical results, we evaluate
and demonstrate the effectiveness and efficiency of the

proposed work in terms of successful SFC placement
under different configuration scenarios. Additionally, the
feasibility restoration tool is benchmarked on its accuracy
and cost minimization.

The rest of this paper is organized as follows. Section II high-
lights the related work. Section III describes the system model
while Sections IV and V present the three main mechanisms
comprising the proposed network planning tool, while in-depth
explaining the operation of the different algorithms devised for
each step. Section VI presents the performance evaluation of
the proposed framework and Section VII concludes the paper.

II. RELATED WORK

During the last few years, the problem of planning the
placement of VNFs/SFCs in an edge/cloud infrastructure has
been tackled in various ways. In this section, we first discuss
some recent online and/or offline VNF placement solutions
at the edge and the cloud, which however do not treat the
infeasibility problem that may be produced due to insufficient
resources. Following, we present some relevant works that deal
with the feasibility restoration, but do not provide a holistic
network planning tool. Finally, we briefly compare our work
with the related works in the field and summarize its novelty.

A. Offline and Online VNF placement

Research in VNF placement caters to both planned (offline)
and immediate (online) network demands, balancing efficiency
with dynamic adaptability. In the latter category that focuses
on real-time responsiveness, in [7], a two-step process of
VNF placement and migration is employed, using dynamic
programming heuristics based on current traffic, while mi-
gration acts as a corrective measure for traffic deviations.
Using flow characteristics found in production data centers and
realistic traffic patterns, the suggested mechanism is shown
to outperform the state-of-the-art. Similarly, Zhang et al. in
[8] tackle VNF placement and migration simultaneously as an
online optimization problem to accommodate new requests in
resource-constrained situations. The objective in this work is
to maximize the total throughput minus a weighted total VNF
migration cost. On a slightly different note, the authors in [9]
reformulate the problem as a Markov Decision Process and
then use a variant of Q-Learning to solve it in a 6G-enabled
edge computing environment. In this way, they manage to
perform near-optimal, real-time VNF placement.

On the other hand, offline mechanisms prioritize long-term
optimization. For example, Mao et al. in [10] suggest a two-
part algorithm that optimizes edge SFC placement to reduce
the use of edge and cloud resources, as well as service latency.
Here, the requests are dealt in batches, which ensures efficient
resource utilization and avoids the redundant data traffic. A
similar objective is used in [11], where the authors suggest
a two-stage mechanism that first places the VNFs offline and
then schedules the users requests among them in real-time. The
simulations results here show a significant improvement in the
request rejection rate. Dieye et al. also propose a mechanism
for the proactive placement of VNFs in [12], where VNFs are
deployed in an optimal manner before any request is received
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from the end-users to access the service. The objective here
is to reduce the cost for the infrastructure. On the other hand,
Sun et al. in [13] try to formulate an offline, optimal VNF
placement solution based on an ILP model formulation. This
mechanism requires knowledge of all the future incoming
requests, thus is deemed unrealistic, and an online version
of it is proposed as well. The latter still includes a VNF pre-
allocation phase.

Combining the good from both worlds, hybrid mechanisms
offer both proactive and reactive solutions for VNF placement.
An indicative work in this domain is [14], where the authors
propose an offline SDN/NFV network planning mechanism
with a cost model and a realistic topology description, com-
plemented with an online, resource allocation mechanism
based on an experimental validation. The two mechanisms
work seamlessly together towards providing a holistic VNF
placement solution. Similarly You et al. in [15], propose a
load balancing policy named Constrained Min-Max Placement
(CMMP) that schedules VNFs in a way similar to the max-
min allocation, where they try to assign the highest number of
VNFs possible to the least loaded server, offline. Then, they
extend this planning mechanism with an online heuristic that
speeds up the placement compared to other baselines.

Overall, these studies demonstrate the breadth of VNF
placement research, addressing a spectrum of scenarios and
goals. They commonly provide solutions for sufficient in-
frastructure resources but often overlook infeasible placement
scenarios, highlighting the need for strategies that identify and
resolve infeasibility.

B. VNF Placement Feasibility Restoration

The challenge of securing feasibility during VNF placement
is critical to maintain network reliability and performance.
Ensuring that sufficient resources are always there to handle
the dynamic demands of the network, is a cornerstone of
effective VNF management. In one of our earlier works [6],
we have underlined the significance of identifying root causes
for infeasibility in the underlying network infrastructure. This
was achieved through an automatic feasibility restoration
mechanism, pinpointing the primary reasons for infeasibility.
This approach can adapt to dynamic changes in resource
demands by suggesting rectifications based on elastic resource
management. It showcases the essence of elasticity in resource
management - an indispensable trait in networks with unpre-
dictable demands.

Wang et al. in [16], proposed a dual-stage framework.
In the pre-placement stage, the VNF placement is solved
using the Grey Wolf Optimizer (GWO), which is guided
by predictions on incoming workload. The goal here is to
minimize resource consumption while adhering to delay con-
straints. The corrective stage, on the other hand, employs a
greedier approach. Its primary function is to accommodate
unpredicted SFC requests, yet doing so in a manner that
keeps placement costs minimal. This work highlights the
importance of adaptability in VNF placements, catering to
both predicted and unpredicted network demands. However,
this two-staged framework, while aiming for precision, might

introduce unnecessary complexities. Multi-staged approaches
often require more resources, both in terms of computation
and administration, to be effectively implemented. Moreover,
it relies on historical data that may not always capture the
nature of real-time network changes. This might result in
false positives or negatives, leading to either over-allocation
or under-allocation of resources.

A Deep learning-assisted solution to feasibility restoration
was presented by Pandey et al. in [17]. Their framework
uses Deep Q-Networks (DQNs) to allocate VNFs at the
network’s edge. This solution is capable of renting resources
from neighboring data centers when local resources fail to
accommodate all VNF requests. However, relying on DQNs
introduces a level of opacity in decision-making, often called
the “black box” problem; interpreting and justifying the net-
work’s specific placement decisions might become challeng-
ing. Moreover, DQNs require significant amounts of data
for training. In dynamic and evolving network environments,
frequent retraining might be necessary to ensure the model
remains relevant, which can be resource intensive.

C. Novelty of our Work in Comparison to the Literature
While the above methods offer promising solutions to the

challenges of VNF placement and feasibility restoration, a
comprehensive approach encompassing all facets of network
planning is still lacking. Such a holistic method should cater
to the entire lifecycle of service placement in an edge/cloud
infrastructure, ensuring that the VNF placements are optimal,
adaptable, and resilient to changing demands. The holistic
approach has the primary advantage of providing an integrated
view of the entire network. By considering all aspects of
the network, from edge devices to core infrastructure, holis-
tic planning is better positioned to synergize and optimize
resources. Furthermore, flexibility is at the heart of holistic
planning. It optimizes resource allocation by leveraging real-
time network conditions and predictive insights. Rather than
relying on reactive measures, it proactively identifies potential
bottlenecks and reallocates resources to ensure peak network
performance. Despite the current attempts and the implemen-
tation of a few existing techniques for VNF placement and
feasibility restoration, we have encountered a deficiency of
methods that take into consideration the complete range of a
network planning tool: offline planning, online corrective ac-
tions, and semi-real time suggestions for locating and repairing
potential infeasibilities during VNF placement.

Our VNF placement approach adeptly manages both
planned and immediate network demands. For offline place-
ment, we use a strategic, long-term approach to optimize
VNF allocation, leveraging complete network information and
demand projections for efficient initial setup or significant
upgrades. This involves advanced computations to prepare
the network for future demands. In contrast, our online VNF
placement is dynamic, focusing on instant decisions in re-
sponse to unforeseen network changes, using real-time data
without future state knowledge. It employs rapid-response
algorithms and feasibility restoration techniques for optimal
VNF allocation amidst fluctuating conditions, using real-
time analytics and adaptive heuristics for instant resource
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reconfiguration. Our integrated offline and online strategies
provide a robust and flexible solution for efficient network
resource management, enabling operators to swiftly adapt to
new demands and issues as they emerge.

Hence, our research endeavors to explore the problem at
hand and establish versatile solution strategies for VNF place-
ment and feasibility repair. We suggest precise and heuristic
methods and assess both offline and online VNF allocation
as well as suggestions for the SPs and InPs on how to
accommodate more SFC requests in their infrastructures, if
needed. Furthermore, our analysis focus on an edge/cloud in-
terplay, which enables end-users to encounter reduced latency
in an integrated edge and cloud infrastructure. This could
lead in reducing the expenses (i.e., CapEx and OpEx) for
the involved stakeholders, while concurrently upholding the
quality of communication services.

III. SYSTEM MODEL

In this section, we provide the modeling of the system that
will be the input to the VNF placement and SFC planning
algorithms. In particular, we model the physical infrastructure
as a 3-tier network, consisting of the edge, transport and core
(cloud) tiers, as shown in Fig. 1.

The physical network is represented as an undirected graph
G = (H,L), where H denotes the set of nodes and L the set
of physical links. In VNF placement problems, the physical
network is described as an undirected graph for simplicity and
efficiency. This representation captures communication links’
bi-directionality, providing a clear view of node connectivity
without repetitious connections. An undirected graph facili-
tates algorithmic complexity and computation times, ensuring
efficient and effective VNF placement. The nodes can be either
servers N ⊂ H or routers W ⊂ H, with N ∪ W = H.
The servers are further classified based on their location as
edge servers NE ⊂ N and core servers NC ⊂ N, with
NE∪NC = N. Similarly, the routers are separated into gateway
routers WQ ⊂ W, which are the network’s entry points from
where end-users connect to their requested SFCs, and normal
routers WO ⊂ W that interconnect the three network tiers,
with WQ ∪WO = W. Finally, each server n ∈ N is attributed
with a vector of available resources R(n) (i.e., CPU, memory,
storage), while every link (u, v) ∈ L is characterized by a
bandwidth capacity b(u, v) and a propagation delay dp(u, v).

Regarding the SFCs, we assume that there is a set S of SFCs,
representing different types of network services. Each SFC
Si ⊂ S consists of a number of K interconnected VNFs, such
that Si = (si0, s

i
1, s

i
2, s

i
K), with si0 being the gateway router,

wi
q ∈WQ, from which a user requesting the SFC Si is access-

ing the network. Following [18], we assume that the VNFs can
be interconnected in various ways (e.g., linear or bifurcated).
Each VNF sik in an SFC Si is characterized by a vector of
resource demands P (sik) (i.e., CPU, memory, storage) and a
maximum processing delay dmax

pr (sik) that need to be satisfied.
The incurred processing delay depends on the capabilities of
the server that will host the particular VNF dpr(s

i
k, n), n ∈ N ,

and it must hold that dmax
pr (sik) ≤ dpr(s

i
k, n). Naturally, the

incurred processing delay of each VNF depends on whether
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Fig. 1. An overview of a network infrastructure and some SFC instances.

the VNF is hosted on an edge or a core server. This is based
on the fact that core servers are more powerful and can yield
lower processing delays than edge ones. Additionally, each
virtual link of an SFC that interconnects two VNFs, i.e., (sik,
sik′ ) has a bandwidth requirement b(sik, s

i
k′) and a maximum

propagation delay dp(s
i
k, s

i
k′) that need to be satisfied. Finally,

each SFC requests a maximum end-to-end delay dE2E(S
i)

that must be respected, which is the sum of the total processing
and propagation delay noticed in all VNFs and virtual links.

Fig. 1 shows an example of the physical infrastructure
and some requested SFCs. In particular, three different SFCs
are considered, all having different topological characteristics
(illustrated with red, blue, and green colors, respectively). The
SFCs start at the gateway routers WQ where the users are
connected (i.e., w6 for the red SFC and w7 for the blue and
green). The problem that we target in the first part of this
paper is the following: considering the physical network of the
InP and an estimation of the number of SFCs, their type and
their expected entry point/gateway, find the most appropriate
SFC planning or VNF placement solution. The solution should
satisfy the interests of both the InP and the users.

IV. OFFLINE AND ONLINE SFC PLANNING

In this section, we mathematically formulate the SFC plan-
ning problem described above. The ultimate goal is to find
the optimal solution that minimizes the computational and
communication resources used (as this constitutes the typical
SFC’s deployment cost [19]) and satisfies the user’s SFC
requirements under a number of constraints imposed by the
InP. Our approach is designed to cater to the specific needs of
both SPs and InPs, ensuring optimal resource utilization and
compliance with user-defined constraints. SPs are primarily
concerned with minimizing operational costs and maximizing
service availability and quality, which translates to efficient
resource usage and adherence to SLAs. In contrast, InPs
optimize infrastructure utilization, balance load, and ensure
long-term scalability and maintainability.
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When considering where to place VNFs, both the network’s
core and edge provide distinct advantages. The core, known
for its robust computational power, is a centralized hub for
efficient processing-intensive tasks critical for latency-sensitive
applications. This centralization allows for better resource
aggregation and dynamic allocation and better adaptation to
changing traffic patterns and service demands. Furthermore,
through its redundant infrastructure, the core ensures higher
resilience and maintains consistent Quality of Service (QoS)
policies across various network segments. On the other hand,
the placement of VNFs at the network edge significantly
reduces latency by shortening the data travel distance, which
is advantageous for real-time applications such as AR/VR
and online gaming. Edge placement also promotes localized
data processing for quick decision-making and effective traffic
offloading, potentially reducing core congestion. Addition-
ally, VNFs at the edge can be tailored to specific regional
or local needs, ensuring personalized service delivery. Edge
placements prioritize fast localized processing and low la-
tency, whereas core placements prioritize robust computation
and policy uniformity. Specific application requirements often
determine the best option, and some scenarios may benefit
from a hybrid placement technique; therefore, in this paper,
we consider a strategic hybrid placement.

A. Offline ILP Formulation

The above problem can be formulated as an Integer Linear
Programming (ILP); to this end, two binary decision variables
are introduced, x

sik
n that is set equal to 1 if the VNF sik is

allocated on the server n ∈ N and y
siks

i
k′

uv which is set equal
to 1 if the virtual link between sik and sik′ is routed over the
physical link (u, v) ∈ L. Hence, the objective function can be
expressed as follows:

min
x,y

|S|∑
i=1

(

Si∑
sik

N∑
n

Mnwnx
sik
n +

Si∑
sik

Si∑
si
k′

L∑
(u,v)

wuvy
siks

i
k′

uv ). (1)

The goal of this objective function is twofold. The first term
tries to minimize the number of used edge servers by introduc-
ing the binary cost Mn. In particular, Mn takes the value of
1 if the server n is an edge server (n ∈ NE) and 0 otherwise.
This can be reasoned by the fact that cloud servers are much
more powerful than their edge counterparts. Hence, to avoid
using “expensive” edge resources and clogging the Edge of
the network, the cloud servers will be prioritized, provided
they respect the constraints of the SFC (i.e., in terms of E2E
delay and resources). By incorporating Mn, the formulation
prioritizes the use of cloud servers over edge servers, thereby
minimizing the use of more “expensive” and scarce edge
resources. The second term minimizes the communication
cost by using as few links as possible to interconnect the
different VNFs of an SFC. Reducing the number of used
links directly contributes to minimizing the communication
cost, which is a significant factor in network planning. Our
ILP formulation is specifically designed to balance the trade-
offs between minimizing computational and communication

resources, a typical objective for SPs and ensuring high-quality
service delivery within the constraints imposed by InPs.

Moreover, wn and wuv are the weights network operators
can adjust to prioritize using server capacities or link routing
based on their specific requirements and preferences. This
added layer of flexibility ensures that the objective can be
adapted to accommodate a wide range of network conditions
and operational strategies. To simplify the presentation of the
approach, and without hampering the generalizability of the
objective function, in our implementation we assign equal
weights wn = wuv = 1,∀n ∈ N,∀(u, v) ∈ L. The objective
function is minimized subject to the constraints that follow:

dTotal(S
i) ≤ dE2E(S

i),∀Si ∈ S, (2)∑
n∈N

dpr(s
i
k, n)x

sik
n ≤ dmax

pr (sik),∀sik ∈ Si,∀Si ∈ S, (3)

∑
(u,v)∈L

dp(u, v)y
siks

i
k′

uv ≤ dp(s
i
k, s

i
q),∀sik|k′ ,∀Si ∈ S. (4)

First, we need to guarantee that the total experienced
delay of an SFC, dTotal(S

i), is less than the
E2E delay requirement (constraint 2), where
dTotal(S

i) =
∑

sik∈Si

∑
n∈N dpr(s

i
k, n)x

sik
n +∑

sik∈Si

∑
si
k′∈Si

∑
(u,v)∈L dp(u, v)y

siks
i
k′

uv . Furthermore,
the individual processing delay requirements for each
VNF (constraint 3) and the individual propagation delay
requirement of each virtual link of an SFC (constraint
4) should also be ensured. It is worth noting that strict
requirements for processing delay will lead to the allocation
of the VNF at the core of the network, while strict
propagation delay requirements will guide the solution to
place the involved VNFs on the same or adjacent servers.
The next set of constraints assures that the computational
(constraint 5) and communication (constraint 6) resources are
not oversubscribed:

|S|∑
i=1

∑
sik∈Si

P (sik)x
sik
n ≤ R(n),∀n ∈ N, (5)

|S|∑
i=1

∑
sik∈Si

∑
si
k′∈Si

b(siks
i
k′)(y

siks
i
k′

uv + y
siks

i
k′

vu ) ≤ b(u, v),

∀(u, v) ∈ L. (6)

The flow conservation constraint (7) ensures the interconnec-
tion of the VNFs by performing the routing between the source
and destination of each virtual link. This constraint is defined
for each virtual link independently, allowing it to accommo-
date various SFC topologies, including linear, branched, and
more complex non-linear structures. This constraint ensures
that the ingress and egress flows are appropriately balanced,
regardless of the overall SFC topology:∑

v∈H
(y

siks
i
k′

uv − y
siks

i
k′

vu ) = (x
sik
u − x

si
k′

u ),

∀u ∈ H,∀sik|k′ ∈ Si,∀Si ∈ S. (7)



6

Finally, we need to ensure that each VNF will be placed at
only one node (constraint 8), provided that the specific node
is a server (constraint 9), except the first VNF of an SFC that
simply denotes the entry gateway of the user requesting the
SFC (constraint 10):∑

h∈H
x
sik
h = 1,∀sik ∈ Si,∀Si ∈ S, (8)

∑
n∈N

x
sik
n = 1,∀sik ∈ Si \ {si0},∀Si ∈ S, (9)

x
si0
wi

q
= 1,∀Si ∈ S. (10)

The above formulation will give the global optimal solution
for all SFCs expected to be serviced by the network. Hence,
given all the SFCs’ requirements and the current state of
the network, the ILP solver decides the optimal allocation
and interconnection of VNF instances across the underlying
network infrastructure based on the objective in Eq. 1.

However, since the problem of interest is an NP-hard prob-
lem [20], the execution time exponentially increases with the
size of the network. Even though long execution times can be
acceptable for offline network planning (e.g., “dimension the
network for the next day/week/month”), in order to avoid any
computational intractable situation, we additionally propose
two offline heuristic approaches, namely SeqSort and SeqBi-
ased. Our SeqSort and SeqBiased heuristics were designed to
provide practical, near-optimal solutions in less time than the
global ILP method. These heuristics’ core philosophy is to
simplify the problem by breaking it down into manageable
parts, processing them sequentially, or prioritizing based on
specific criteria, thereby avoiding the exhaustive search space
that defines the problem’s NP-hard nature.

1) Sequential Sort (SeqSort): SeqSort is a sequential
heuristic in which the ILP method is executed for a single SFC
at a time, and the state of the network resources is updated ac-
cordingly. Instead of finding the allocation for all the SFCs in
batches, as in the global offline ILP method, SeqSort first sorts
the SFC requests in descending order based on the weighted
sum of their computational demands (i.e., CPU, memory
and storage). For example, given a service request Si with
the following demands, 4 CPU cores, 4000MB of RAM,
and 400GB of storage,

∑
sik∈Si P (sik) = [4, 4000, 400], a

weighted average of the demands is calculated as follows:
Pav(S

i) = ⌈(P [0]+P [1]/1000+P [2]/100)/3⌉. Thus, in this
case, Pav = ⌈(4+4000/1000+400/100)/3⌉ = 4. The purpose
of using this weighted average is to prioritize SFC requests
with higher computational demands. This approach handles
more resource-intensive requests earlier in the sequence, in-
creasing resource utilization and reducing potential resource
allocation bottlenecks. Since SeqSort is not dealing with all
the SFCs at the same time, it provides suboptimal solutions.
However, SeqSort is still an offline solution since it requires
the knowledge of all future SFCs that are expected to come.
The pseudocode of SeqSort is given in Algorithm 1.

The first step involves calculating Pav(S
i) for each SFC,

which is done in O(|S|) time where S is the number of
SFCs. Sorting the SFCs based on Pav(S

i) takes O(|S|log|S|),

Algorithm 1: SeqSort
Inputs: G,S
Output: Total Cost, Total Execution Time, Acceptance

Ratio
1 for (i = 0; i < |S|; i++) do
2 Calculate Pav(S

i);
3 end
4 SortedSFCs ← Sort SFCs in descending order based

on Pav(S
i);

5 TotExecT ime = 0, T otObjCost = 0, Blocking = 0;
6 for (i = 0; i < SortedSFCs.size; i++) do
7 Allocate Si using an ILP solver;
8 TotExecT ime += Si.ExecT ime;
9 TotObjCost += Si.ObjCost;

10 if Si.allocated then
11 Reserve resources for Si;
12 else
13 Blocking ++;
14 end
15 end
16 AcceptanceRatio = 1−Blocking/|S|;

considering a standard sorting algorithm. The main loop
iterates over each SFC, in which a single SFC is allocated
in O(|S|Csolver), where Csolver is the ILP solver complexity
for allocating a single SFC. In our implementation, we use
Gurobi’s ILP solver [21] which solves the problem using
the branch-and-bound method, complemented with heuristics
and reductions to speed up the practical running time. The
computational complexity of this approach is still ultimately
exponential. Therefore, the SeqSort Algorithm takes O(|S|+
|S|log|S| + |S|Csolver) time to allocate all SFCs presented
in the problem instance. The computational complexity of the
SeqSort algorithm is dominated by the single SFC allocation
step, which nonetheless is significantly less complex compared
to the ILP problem for all SFCs. The other steps contribute a
linear or log-linear component to the overall complexity.

2) Sequential Biased (SeqBiased): This one is also a se-
quential heuristic, as it allocates one SFC at a time, but unlike
SeqSort, it does not resort to the ILP method. Computational
concerns largely drove the decision not to utilize the ILP
method in SeqBiased. ILP, although robust and optimal, can be
computationally expensive, mainly when applied to large-scale
and dynamic problems like the one we address. Our goal with
SeqBiased was to present a heuristic that’s efficient in terms
of solution quality and computationally tractable, ensuring that
it is practical for real-world deployment scenarios. Refraining
from the ILP method, we could expedite the solution process
and provide answers within reasonable timeframes, especially
suitable for real-time or near-real-time demands.

First, it calculates the weighted sum of the computational
resource requirements of each SFC Pav(S

i) as before and
sorts them in descending order. Secondly, the shortest paths be-
tween the SFCs’ gateways and all the servers are determined,
using the well-known Dijkstra algorithm. Then, a weighted
sum Zsum(n, i) is calculated for each server based on its
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average availability of resources Rav(n); Rav(n) = ⌈(R[0] +
R[1]/1000 +R[2]/100)/3⌉, Rav(n) is calculated similarly to
the Pav(S

i), and the distance d(i) from the gateway that the
SFC Si is coming from. The distance d(i) is the sum of the
links’ propagation delay connecting the gateway wi

q to server
n. Thus, the servers’ weighted sum is calculated as follows:
Zsum(n, i) = a1 ∗ d(i) + a2 ∗ ⌈(1/Rav(n)) ∗ σ⌉, where σ
is a scaling factor and a1, a2 are priority weights. In our
experiments, we set a1 = a2 = 1 and σ = 10 to prioritize
servers closer to the user. Then, the servers are sorted in
descending order. Finally, the VNFs of an SFC are allocated to
the ordered servers, favoring those that are closer to the SFC’s
gateway and with enough available resources. The pseudocode
of SeqBiased is given in Algorithm 2.

Algorithm 2: SeqBiased
Inputs: G,S
Output: Total Cost, Total Execution Time, Acceptance

Ratio
1 for (i = 0; i < |S|; i++) do
2 Calculate Pav(S

i);
3 end
4 SortedSFCs ← Sort SFCs in descending order based

on Pav(S
i);

5 Execute Dijkstra’s Algorithm;
6 for (i = 0; i < |WQ|; i++) do
7 for (n = 0; n < |N |; n++) do
8 Calculate Zsum(n, i);
9 end

10 SortedServersi ← Sort servers in descending
order based on Zsum(n, i);

11 end
12 TotExecT ime = 0, T otObjCost = 0, Blocking = 0;
13 for (i = 0; i < SortedSFCs.size; i++) do
14 Allocate Si in set SortedServersi;
15 TotExecT ime += Si.ExecT ime;
16 TotObjCost += Si.ObjCost;
17 if Si.allocated then
18 Reserve resources for Si;
19 else
20 Blocking ++;
21 end
22 end
23 AcceptanceRatio = 1−Blocking/|S|;

The initial steps for calculating Pav(S
i) and sorting the

SFCs are similar to SeqSort, with a complexity of O(|S|)
and O(|S|log|S|), respectively. Running Dijkstra’s algorithm
adds a complexity of O(|E|log|N |), where |E| is the number
of edges, and N is the number of nodes in the network
graph. The nested loops for calculating Zsum(n, i) and sorting
servers have a complexity of O(|S||N |log|N |). Therefore, the
SeqBiased Algorithm takes O(|S|+ |S|log|S|+ |E|log|N |+
|S||N |log|N |) time to allocate all SFCs presented in the
problem instance. The SeqBiased algorithm, therefore, has a
complexity mainly influenced by Dijkstra’s algorithm and the
servers’ sorting steps. Since some of these terms might be

dominant over others depending on the specific values of |S|,
N , and |E|, the total complexity will be influenced by the
most significant terms in practical scenarios.

In our context, offline heuristics methods primarily use pre-
defined rules based on network state and expected workloads.
These criteria consider the network’s current and projected
bandwidth usage, computational capacities at different net-
work nodes, expected end-to-end latency, and the requirements
for specific service functions. Offline heuristics aim to use
the predictions of SFCs’ requests to strategically place it
in locations that offer optimal performance while balancing
the trade-offs between computational overhead and network
congestion by evaluating the network’s existing conditions
against the expected demand.

By definition, offline approaches operate based on prior
knowledge or estimations of incoming SFC requests, and they
frequently run batch optimization processes based on this
knowledge. When the estimations are correct, this method
results in efficient resource utilization, as the algorithm can
examine the entire set of requests before deciding. The primary
limitation of offline approaches, however, is their rigidity;
the system commits to those allocations once the process is
complete, meaning there is no flexibility to adjust in real-
time in case of unexpected SFC request arrivals or inaccurate
estimations. The entire optimization process would have to be
re-run, which is not possible in a real-time scenario, especially
given the computational time required for optimization. On the
other hand, online methods, that make decisions as requests
arrive, are adaptable to changing conditions or inaccuracies in
demand prediction. This adaptability is due to their inherent
design, which allows them to make decisions without prior
knowledge of the entire request sequence, allowing for flexi-
bility in changing scenarios.

B. Online SFC Planning

The above approaches work well in an offline setting that
assumes that all the SFCs that will co-exist on the physical
infrastructure at the same time, are known in advance. This
makes them good candidates for network planning, as long as
the estimation of the number of incoming SFCs and the state
of the physical network are accurate. However, as explained,
if the estimations are inaccurate (e.g., more SFC requests
are submitted from possibly different gateways), the offline
approaches cannot provide alternative solutions in real-time.
Accordingly, in this part of the section we present several
online approaches that can independently place each incoming
SFC while also leveraging the results of the global ILP offline
solution to help the network operator take corrective measures.
The online algorithms will have to take into consideration
the arrival and the departure times of the SFCs, which could
depend on the type of service requested and the location
of the end-users. Moreover, following the allocation or de-
allocation of any SFC, the state of network resources is
updated in real-time within the ILP model. This dynamic
update ensures the model constantly works with the most
recent network conditions, allowing for accurate placement
decisions. In contrast to the offline approach, our online SFC
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planning strategies are designed for real-time adaptability, a
crucial requirement for SPs in rapidly changing network envi-
ronments. Online strategies consider the arrival and departure
times of SFCs, which vary based on service type and user
location, directly impacting SPs’ ability to deliver continuous
and reliable services.

1) Pre-allocation Method: Pre-allocation refers to setting
aside resources for future use based on predicted needs. The
idea is to have resources ready to use when demands come
in, which can reduce real-time computational overhead and
accelerate service provisioning. In this method, a number of
preallocated solutions produced during the offline execution of
the global ILP can be used. In particular, during the network
planning phase, the network operator can decide the number,
type, and location of the preallocated solutions beforehand,
based on the expected network services to be deployed and
pass them as input to the ILP model. Following, as service
requests arrive to the network in real time, the method allocates
them using the preallocated solutions. Hence, no placement
algorithm is executed in run time. Once the network runs out
of preallocated solutions, it will start blocking the incoming
requests. This method needs to wait for preallocated solutions
to become free again before admitting new SFCs.

2) Pre-allocation plus online ILP Method: Similar to the
previous method, this approach allocates the incoming requests
using the preallocated solutions. However, it does not block the
request immediately once the network runs out of preallocated
solutions. Instead, it finds a new solution by formulating a
new ILP problem for allocating only the blocked SFC using
the following objective function:

min
x,y

(
∑

sik∈Si

∑
n∈N

Mnx
sik
n +

∑
sik∈Si

∑
si
k′∈Si

∑
(u,v)∈L

y
siks

i
k′

uv ). (11)

This way, the network operator can find a remedy solution if
the network planning during the offline pre-allocations stage is
inaccurate. In detail, this formulation considers available and
occupied resources, the specific requirements of the blocked
SFC, and the existing network topology, to form the objec-
tive function. Integral constraints include resource availability,
maintaining the SFC’s inherent sequence, and ensuring that
latency limits are not exceeded. This approach aims to achieve
optimal resource allocation for the blocked request by care-
fully considering these factors to improve system efficiency
and acceptance rate.

3) Pre-allocation plus online Greedy Method: This method
is similar to the preallocation plus online ILP method. How-
ever, here we find a new solution for the blocked service
request by using the SeqBiased heuristic instead of using
a single-SFC ILP formulation. The choice to employ the
SeqBiased heuristic in the context of the pre-allocation plus
online greedy method, as opposed to resorting to a single-
SFC ILP formulation, is based on several key considerations.
First, the computational efficiency of the SeqBiased heuristic
is notably superior in real-time scenarios compared to the
computationally intensive ILP formulations. Such efficiency
is pivotal for immediate, on-the-fly adjustments. Secondly, the
inherent design of SeqBiased is agile, allowing it to adjust

to dynamic changes in the network state adeptly and can
offer feasible solutions even in situations where the strict ILP
might struggle. Lastly, whereas an ILP approach can introduce
overheads, particularly for individual SFC requests, SeqBiased
efficiently mitigates these overheads due to its heuristic nature,
making it more fitting for real-time single SFC allocations.

V. INFEASIBILITY RESTORATION FOR SFC PLANNING

The global offline ILP is an efficient algorithm for finding
the optimal solution for a batch of SFCs. However, if the
available physical resources of the InP are not enough or if a
constraint cannot be satisfied, the ILP becomes infeasible. This
means that either all the SFCs will find a suitable placement
or none will be allocated. This problem can be alleviated
with the two offline heuristic approaches proposed that solve
the problem for one SFC at a time. After applying either
of them, only the excessive SFCs will be blocked due to
resource limitations in the infrastructure. Nonetheless, an InP
naturally needs to have a better insight into the cause of
infeasibility and plan their network resource allocation ac-
cordingly. Often, infeasibilities in network resource allocation
can arise from various factors such as dynamic traffic patterns
that might suddenly surpass the anticipated loads, physical
hardware constraints and hardware malfunctions, software
misconfigurations or failures, and external factors like network
attacks or large-scale outages. These variables can converge
in complex ways for InPs, making it difficult to pinpoint the
precise reasons for an allocation’s impracticality. InPs need
a systematic approach to diagnosing and understanding these
obstacles to optimize resource allocation.

Thus, in this section, we propose infeasible restoration
techniques that will allow the global offline ILP to not only
detect infeasibilities, but also provide suggestions to the InPs
on where more resources (such as CPU, Memory, Storage
and bandwidth) should be added in the network to restore
the infeasibility. To do so, the additional resources should
be associated with a cost, meaning that the least expensive
resources will be added to the network first, reducing this way
the additional capital and operational expenses of the provider.

For this reason, two approaches are introduced for the
infeasibility analysis. The first approach is called Irreducible
Infeasible Set (IIS) Repair and leverages the information of
the unsatisfied constraints that cause the infeasibility. The
second approach is called Minimum Cost Redesign and it
converts the infeasibility analysis problem to an optimization
problem using elastic variables. After determining the sources
of infeasibilities, our algorithms automatically recommend a
remedy by finding out the repair with the best cost.

A. Irreducible Infeasible Set

One of the standard methodologies for infeasibility analysis
is identifying the constraints’ Irreducible Infeasible Set (IIS).
IIS is defined as a subset of the model constraints and variable
boundaries that cannot be jointly met [22]. However, the
removal of any member of the IIS could make the remain-
ing members of the IIS jointly satisfiable. Thus, IISes can
be used in identifying the grounds of infeasibility and are
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essential components in infeasibility analysis. The size of an
IIS depends on the number of constraints in the system. For an
infeasible model with many constraints, IIS generally contains
many components, making it challenging to identify the source
of infeasibility accurately.

Typically, when we have an infeasibility, our goal is to
determine which changes should be made to restore the
feasibility. However, a challenging aspect is that not all of
the constraints can be modified. For example, adding a new
and long fiber to interconnect two data centers may not be
realistic in order to solve an infeasibility caused by limited
communication resources. Similarly, the addition of a new
edge datacenter can solve infeasibilities emerging from the
lack of computational resources but may be too expensive
for a network operator. Therefore, it is vital to identify those
constraints in the IIS that must be met (i.e., unmodifiable
constraints), from those that might perhaps be relaxed (i.e.,
modifiable constraints). Subsequently, the analytical efforts
can be focused on the modifiable constraints only. In our
case, modifiable constraints refer to adjustable parameters,
such as resource capacities. On the other hand, unmodifiable
constraints represent fixed conditions, rules, or requirements
that must be strictly satisfied for a solution to be feasible,
such as user location, strict limitations (i.e., E2E delay) or
regulatory requirements.

Furthermore, another challenge is that the IIS is not unique.
For example, an infeasible model may have more than one
IISes [23]. This is because after every execution, a different
set of constraints may be identified as an IIS. Therefore, the
removal of any member of a specific IIS is not necessarily
enough to fix the infeasibility of the model; we need to relax
at least one member from each IIS to restore the feasibility.

To better understand the concept of an IIS, let C define a
set of jointly infeasible constraints, then the subset I ⊆ C is
an IIS of C if and only if I is infeasible and when relaxing
any member of I makes the problem feasible. Moreover, I is
a Minimum-Cardinality IIS Set Cover (“Min. IIS Cover”) of
C iff C\I is feasible, and the addition of any c ⊆ I to C\I
makes it infeasible. Every Min. IIS Cover is a hitting set of all
IISes, i.e., intersects with each IIS. Eliminating an IIS from
C, i.e., relaxing one of its members, may not make it feasible
if C has multiple IISes. However, removing a Min. IIS Cover
from C, i.e., relaxing all its members, is guaranteed to make
C feasible [22].

Thus, our goal is to identify the IIS and relax the minimum
set of constraints that make the model feasible. The relaxing
of the said constraints will be translated into the addition
of resources to the network infrastructure that will help the
provider make a better planning according to the expected de-
mand. Obviously, this addition should incur the minimum cost
for the provider and this will be the goal of the infeasibility
restoration techniques presented below.

B. IIS Repair

The IIS repair approach leverages the information provided
by the IIS. Several methods for identifying a single IIS of an
infeasible model can be found in the literature [22]. However,

as stated above, an IIS is not unique, and an infeasible problem
can have many IISes. Hence, to find the optimal repair, we
need to uncover all the IISes. Unfortunately, finding all IISes
is an NP-Hard problem [24]. The general idea of IIS repair
is to pursue find-and-repair cycles. In each cycle, the model
is solved, and an IIS is identified and corrected. Then, the
determined IISes are analyzed to select which constraint to
relax and add it to the IIS Cover. This is repeated until the
model becomes feasible. We propose two algorithms for the
IIS repair, namely the CostBased and the ShuffleFilter.

1) CostBased: A graphical illustration of the CostBased
method is shown in Fig. 2. CostBased is a sequential method
that follows a find-and-repair cycle. A single IIS is identified
and repaired in each cycle. After pinpointing an IIS, CostBased
identifies the constraints that can be altered, in our case the
network resources capacity constraints. Then it goes through
the modifiable constraints of the IIS and assigns a cost to each
one. CostBased relaxes the constraint with the lowest cost and
then adds it to the IIS Cover. Following, it inspects if the model
is feasible or not. If the model is still infeasible, it reiterates the
process. For example in Fig. 2, when solving the ILP model
for the first time we find that the first IIS detected returns three
constraints (c1, c2, and c3). By relaxing constraint c1, adding
it into the current IIS Cover set and resolving the problem, a
new IIS is produced, since two constraints are still not satisfied
(namely c2 and c4). By relaxing constraint c4, adding it into
the IIS Cover and re-executing the ILP model, we end up with
a third IIS that still has two unsatisfiable constraints (c2, and
c5). The process continues until the problem becomes feasible.

The constraint repair cost reflects the amount of additional
resources needed to relax that specific constraint. The modi-
fiable constraints correspond to the communication and com-
putation resources, such as CPU, memory, storage and band-
width. Each resource type is given a weight so that the cost
of different resources is comparable. The cost is calculated as
follows: the number of extra resources are multiplied by their
correspondent weight, where WCPU , WMem, WStorage, and
WBW are the CPU, memory, storage, and bandwidth weights,
respectively. We set the weights as following: WCPU = 1,
WMem = 1/1000, WStorage = 1/100, and WBW = 1.
Although CostBased is a sequential technique that employs a
quick find-and-repair procedure, the provided repairs may not
be the path to the optimal feasible solution, i.e., the solution
with the least amount of constraints relaxations, and thus cost.
The pseudocode is given in Algorithm 3.

2) ShuffleFilter: To reduce the above problem, we introduce
ShuffleFilter, another IIS repair sequential method that also
follows a find-and-repair procedure. However, here in each
cycle we attempt to find more than one IISes; we call them
initial IISes. Fig. 3 shows an example and the flow chart
of the ShuffleFilter algorithm. ShuffleFilter goes through the
modifiable constraints of the IIS and assigns a cost and
priority to each constraint. The priority reflects the number
of occurrences of a particular constraint in the initial IISes. If
a specific constraint is included frequently in the initial IISes,
then it has a higher probability of being included in other
uncovered IISes as well. Thus relaxing that constraint will
yield a higher chance of repairing more IISes, compared to
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Fig. 2. An overview of the CostBased IIS Repair method.

Algorithm 3: CostBased IIS Repair
Inputs: Infeasible ILP model
Output: IIS Cover, Additional Resource Cost

1 Initialize IIS Cover as empty set;
2 Initialize AdditionalResourceCost as 0;
3 while Model is Infeasible do
4 Solve Model to identify an IIS;
5 if No IIS found then
6 Exit loop;
7 end
8 Initialize MinCost as infinity;
9 Initialize ConstraintToRelax as null;

10 foreach constraint in IIS do
11 if constraint is modifiable then
12 Calculate cost of relaxing the constraint;
13 if cost < MinCost then
14 MinCost = cost;
15 ConstraintToRelax = constraint;
16 end
17 end
18 end
19 Relax ConstraintToRelax;
20 Add ConstraintToRelax to IIS Cover;
21 Update AdditionalResourceCost by adding

MinCost;
22 Update Model with relaxed constraints;
23 Re-check feasibility of the Model;
24 end

relaxing other constraints with lower priority. Still, that high
priority constraint may lead to a shorter path to feasibility
but not necessarily the one with the best repair cost. For
instance, in Fig. 3, during the first cycle and for the three IISes
identified, we notice that constraint c2 appears in all of them.
Thus, this particular constraint will have the highest priority to
be relaxed. If more than one constraints have the same priority,
then the repair cost is used to decide which constraint to select.
If two or more constraints share the exact cost and priority,
the method makes a random selection. To find the initial IISes,

ShuffleFilter relies on a shuffle method and multiprocessing,
while it uses a hybrid Additive-Deletion filter to isolate a
single IIS [22]. The hybrid additive-deletion filter allowed
for more accurate identification of IISes compared to other
filtering methods. It integrated the strengths of both additive
and deletion methods, making the process less prone to false
positives or missed IIS identifications. Due to its dual nature,
this hybrid method managed to skip some iterations that would
be needed if the two methods were used independently, thereby
accelerating the IIS identification process. Also, one of the
stimulating reasons to use the hybrid additive-deletion filter
was its compatibility with the shuffle method.

The primary goal of the shuffle method is to diversify the
order in which constraints are analyzed, potentially leading
to the discovery of different IISes. By rearranging the order
of constraints, the algorithm can expose different infeasible
combinations, effectively uncovering more IISes than a static
order would allow. In detail, finding the initial IISes is done as
follows: if a given infeasible model has more than one IISes,
we attempt to uncover more than one IIS using the Additive-
Deletion filter by shuffling the order of the constraints and
applying the filter multiple times. A generic notation i×j can
be used to denote the number of parallel processes (i) and the
number of times each process shuffles the model constraints
and applies the Additive-Deletion filter (j). In our setting,
ShuffleFilter runs eight processes in parallel in each cycle
(i = 8), and each process will shuffle the model constraints
and apply the Additive-Deletion filter eight times (j = 8). So,
ShuffleFilter shuffles the constraint and applies the Additive-
Deletion filter 64 times for each cycle. The more initial IISes
found, the better the selection decision of which constraint to
relax; however, the number of initial IISes found in each cycle
is not fixed. Compared to CostBased, ShuffleFilter employs
a better but slower find-and-repair procedure since, at each
cycle, multiple IISes will be found.

The decision to use eight parallel processes in each cycle of
the ShuffleFilter was primarily influenced by several consider-
ations. Our primary experimental setup was based on a multi-
core architecture that efficiently supported concurrent process-
ing on eight cores without considerable resource contention.
Additionally, in preliminary trials with varying numbers of
processes, we observed that using more than eight parallel
processes led to significant overhead, causing diminishing
returns in performance. Conversely, deploying fewer processes
did not effectively harness the available computational re-
sources. Thus, to maintain consistency across various tests
and comparisons, we found that eight processes provided an
optimal balance between performance and resource utilization.

We finally provide an illustrative example of an IIS repair in
VNF placement to clarify how it works. Consider a scenario
of optimizing VNF placement within a cloud data center
equipped with 10 servers. The capacities for each server are
as follows: 16CPU cores, 32GB of RAM, 1TB of storage,
and 1Gbps bandwidth. For this data center, we have the
following VNF demands from three customers: A) 2 VNFs
each requiring 6CPU cores, 10GB RAM, 100GB storage,
and 300 Mbps bandwidth, B) 3 VNFs each requiring 4CPU
cores, 8GB RAM, 150GB storage, and 250Mbps bandwidth
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Fig. 3. An overview of the ShuffleFilter IIS Repair algorithm.

and C) 1 VNF requiring 8CPU cores, 12GB RAM, 300GB
storage, and 500Mbps bandwidth. When attempting to fulfill
these demands against the available servers’ capacities, certain
infeasible placements are encountered. Utilizing IIS, conflicts
are discovered when deploying VNFs for customers A and B
on servers 1 and 2, due to the excessive CPU requirements.

With the CostBased approach, the initial deployment at-
tempt for customers A and B’s VNFs on servers 1 and 2
results in constraints c1, c2, and c3, clashing. By referring to
the CostBased illustration in Fig. 2, after addressing constraint
c1 by upgrading the capacity of either server 1 or server 2,
new conflicts c2 and c4 are identified. The method continues
in this iterative fashion until a feasible solution emerges.

Using ShuffleFilter, the first cycle identifies three IISes
spread across servers 1, 2, and 3. It is determined that
constraint c2 is common across all identified sets. In the
ShuffleFilter illustration (Fig. 3), after analyzing the three
IISes from the first cycle, it becomes evident that constraint c2,
associated with memory, consistently emerges. Thus, adjust-
ments are made to the servers to alleviate this constraint. This
example illustrates the practical challenges associated with
VNF placements and how methodologies like CostBased and
ShuffleFilter can facilitate feasible solutions. The pseudocode
for ShuffleFilter is given in Algorithm 4.

C. Elastic Heuristic

The last infeasibility restoration model proposed is the
elastic heuristic. Elastic programming or elastic filter [22]
creates a feasibility relaxation model by converting the in-
feasibility analysis problem into an optimization problem by
using elastic variables. Specifically, this method adds elastic
non-negative variables in each constraint, allowing them to
be violated, while at the same time a penalty is added to
the objective function that reflects a cost of the violation. In
other words, the optimal solution of the feasibility relaxation
model minimizes the sum of the weighted magnitudes of the
constraint violations, which in turn can be translated into

Algorithm 4: ShuffleFilter IIS Repair
Inputs: Infeasible ILP model, Number of Shuffle

Cycles nCycles, Number of Shuffles per
Cycle nShuffles

Output: IIS Cover, Additional Resource Cost
1 Initialize IIS Cover as empty set;
2 Initialize AdditionalResourceCost as 0;
3 while Model is Infeasible do
4 Initialize CombinedIIS as empty set;
5 for cycle = 1 to nCycles do
6 for shuffle = 1 to nShuffles do
7 Shuffle constraints of the model;
8 Apply Additive-Deletion filter to find an

IIS;
9 Add found IIS to CombinedIIS;

10 end
11 end
12 Analyze CombinedIIS to determine priorities of

constraints;
13 Select the constraint with highest priority and

lowest cost;
14 Relax the selected constraint;
15 Add the relaxed constraint to IIS Cover;
16 Update AdditionalResourceCost by adding the cost

of relaxation;
17 Update Model with relaxed constraints;
18 Re-check feasibility of the Model;
19 end

minimizing the number of violations needed in the constraints
causing the infeasibilities in the model.

Inspired by the elastic programming, we propose the Elas-
ticHeuristic method. The primary objective here is to offer a
systematic method to transition from an infeasible solution
space to a feasible one. Additionally, instead of a binary
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Fig. 4. Metropolitan Network

feasible-infeasible result, the transformed approach reveals
where and to what extent constraints can be relaxed to allow
all incoming SFC requests to be deployed.

To formulate the elastic ILP, we introduce the variable ei as
the elastic non-negative variable added to constraint i, and pi
the penalty for violating this constraint. Thus, the modifiable
constraints are altered as follows:

• Constraints of the form fi(x) ≤ bi become fi(x)−ei ≤ bi
• Constraints of the form fi(x) ≥ bi become fi(x)+ei ≥ bi
• Constraints of the form fi(x) = bi become fi(x)+ e+i −

e−i = bi
Constraints that cannot be modified retain their original form.
The objective is to minimize Z =

∑
i(piei+pie

+
i +pie

−
i ), i.e.,

minimize the sum of the weighted magnitudes of the constraint
violations, which leads to an automatic relaxation only of
the constraints that cause the infeasibilities. Elastic variables
only obtain non-zero values when the constraint is violated;
therefore, the corresponding penalty value in the objective
function should be considerably big. Based on that, we assume
that the infeasibilities arise due to conflicts in constraints re-
lated to network resources, encompassing both computational
and communication resources. It’s worth noting that these
constraints are the modifiable ones, while others, such as the
end-to-end delay, cannot be altered. To distinguish between
modifiable and unmodifiable constraints, we employ penalties.
If a constraint is violated, the violation has a magnitude: how
much the solution deviates from the constraint’s requirement.
This magnitude is then multiplied (or “weighted”) by a penalty

factor, which signifies the “cost” or “penalty” of violating
that specific constraint. The bigger the violation, the bigger
the penalty. The pseudocode for Elastic Heuristic is given in
Algorithm 5. Therefore, the ILP objective (1) becomes:

min
x,y

|S|∑
i=1

( ∑
sik∈Si

∑
n∈N

Mnx
sik
n +

∑
sik∈Si

∑
si
k′∈Si

∑
(u,v)∈L

y
siks

i
k′

uv

)
+Z.

D. Challenges and Limitations

We encountered several difficulties when transitioning from
an infeasibility analysis to an optimization problem using
the minimum cost redesign approach and elastic variables.
It was critical to determine which constraints to relax with
elastic variables. Constraints deemed essential to the problem
formulation were left unchanged, while others were given
some freedom. Finding this fine line while also ensuring the
model’s integrity was hard. Moreover, imposing proper penal-
ties for constraint violations was crucial. Balancing leniency
and severity needed iterative tuning and validation to ensure
that optimization targets minimal constraint violations with-
out eliminating feasible solutions. Also, altering constraints,
especially equality constraints, was complex. For an equation
like fi(x) = bi, introducing two elastic variables (e+i and
e−i ) increased the problem’s dimensionality. On the benefits
side, because of the reformulation, instead of a mere feasible-
infeasible outcome, now the solution offers insights into which



13

Algorithm 5: Elastic Heuristic
Inputs: Infeasible ILP model, Penalty weights P
Output: Feasible solution with minimized constraint

violations
1 foreach constraint i in ILP model do
2 if constraint i is modifiable then
3 Introduce elastic variable ei;
4 Assign penalty weight pi from P ;
5 Modify constraint i to include ei;
6 else
7 Keep constraint i unchanged;
8 end
9 end

10 Set Elastic Objective: Minimize Z =
∑

i piei;
11 Solve modified ILP model with Elastic Objective;
12 if Solution is Feasible then
13 Analyze the values of ei to determine which

constraints are violated and by how much;
14 Calculate the total cost of violations;
15 end

TABLE I
SFC RESOURCE DEMANDS

Resource Units
CPU 1-4 cores

Memory 1-8 GB
Storage 100-200 GB

Processing delay/VNF 60-100 µs
Propagation delay/vlink 60-400 µs

Bandwidth/vlink 10-20 Mbps

constraints could be feasibly relaxed and to what degree,
demanding detailed analysis and interpretation.

VI. PERFORMANCE EVALUATION

In our experiments, we use the three SFC topologies pre-
sented in [18] and shown in Fig. 1. We refer to the SFC
topologies as Type 1 (blue color), Type 2 (green color), and
Type 3 (red color). The computational demands for the VNFs
range between 1 − 4CPU cores, 1 − 8GB of memory, and
100 − 200GB of storage. Each VNF, according to its type,
has a processing delay requirement between 60 − 100 µs.
Finally, each virtual link has propagation delay requirements
in the range 60− 400 µs and bandwidth requirements in the
range 10 − 20 Mbps. The SFC and VNF characteristics are
summarized in Table I.

Real topological characteristics have been used from a
Ciena infrastructure covering a metropolitan network for the
physical network. As shown in Fig. 4, the network consists
of 169 nodes. Light blue nodes denote the gateways from
which SFC requests can enter the network, blue nodes depict
routers, yellow nodes illustrate the edge data centers, and
red nodes are the core cloud data centers. We assume that
cloud servers are more computationally powerful compared to
edge servers. Moreover, we consider a range of physical link
bandwidths representative of typical Metropolitan and Wide
Area Networks (MAN, WAN). Specifically, the bandwidth

of the physical links in our network ranges from 10 Gbps
to 100 Gbps. This bandwidth range is chosen to reflect the
diverse capacities encountered in real-world network infras-
tructures, allowing us to evaluate the performance of our VNF
placement and routing algorithms under conditions indicative
of actual operational environments.

In the following, we perform three sets of experiments.
In the first set (Offline Planning Experiments), we primarily
focus on evaluating the performance of our offline planning
algorithms (ILP, SeqSort and SeqBiased) regarding execution
time, deployment cost, and acceptance ratio. The objective
is to establish a baseline for the efficiency and scalability of
these algorithms in a controlled, static scenario. The second
set (Offline Planning with Online Correction Experiment),
building on the previous experiment, aims to demonstrate
the practical applicability of the algorithms in a dynamic
environment. Here, we incorporate the aspect of real-time
adjustments to the pre-allocated SFCs, highlighting how online
corrective actions can enhance performance metrics such as
blocking probability and execution time. Finally, in the third
set (Infeasibility Restoration Planning Experiment), we assess
the performance of the infeasibility restoration techniques
regarding repair time and cost. This experiment is designed
to address scenarios where the initial planning (offline or
online) encounters infeasibilities. The focus is on assessing
the effectiveness of our proposed infeasibility restoration
techniques (ShuffleFilter, CostBased, and ElasticHeuristic) in
adapting to network constraints by suggesting optimal resource
additions. The evaluation parameters used in our experiments
are summarized in Table II.

A. Offline Planning

In Section IV, we presented the three offline approaches for
the infrastructure planning, namely, ILP, SeqSort, and SeqBi-
ased. The ILP method is solved using the Gurobi Optimizer, a
highly efficient and powerful solver for linear programming
(LP), mixed-integer linear programming (MILP), and other
optimization problems [21]. The Gurobi Optimizer provides
state-of-the-art algorithms and parallel processing capabilities,
making it one of the best choices for solving ILP problems.

To assess the performance of these proposed approaches,
we compare against a Grey Wolf Optimizer (GWO) approach,
presented in [16]. Similar to our proposed framework, the
GWO tries to first find the allocation of a batch of SFCs in
a network. Likewise, it also tries to search for an optimal or
near-optimal solution that minimizes the overall cost while
maximizing the allocation success ratio. Fig. 5 presents the
execution time for the four algorithms for an incremental
number of SFC requests. As expected, the execution time
of the global ILP increases exponentially with the number
of SFCs. This behavior corroborates the added complexity
of the ILP approach, especially when the experimentation
setup grows larger. As a reminder, the ILP method solves the
problem for all SFCs, as a batch, at the same time. On the other
hand, the SeqSort and SeqBiased algorithms, illustrated by the
blue and green curves, respectively, exhibit a linear growth in
the execution time. In addition, their execution times are much
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TABLE II
EVALUATION PARAMETERS SUMMARY

Parameter Description
Execution Time Time taken by an algorithm to allocate SFCs.

Deployment Cost Objective cost incurred in deploying SFCs
Acceptance Ratio Proportion of successfully allocated SFCs in online VNF allocation

Blocking Probability Likelihood that an incoming SFC request will be rejected
End-to-End Delay Average time for data travel in the network from SFC source to destination

Repair Cost Cost for adding resources to restore feasibility
Repair Time Time taken for infeasibility restoration

Allocation Success Ratio Sequential placement algorithm’s efficiency in allocating batch of SFCs
Online Computation Time Time taken for dynamic computational adjustments when preallocated solutions are exhausted

Offline Execution Time Static computational time taken for preallocating SFCs before their actual arrival
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Fig. 5. Average execution time analysis.

lower than ILP, signifying that they are far more scalable and
better suited for larger scale problems. This is due to the fact
that these algorithms perform the allocation of only one SFC
at a time. Another interesting observation is that although the
SeqSort is based on a reduced ILP formulation (i.e., only for
one SFC at a time), it manages to achieve execution times
close to SeqBiased, a purely greedy heuristic.

Like SeqSort and SeqBiased, the black curve illustrating
the GWO algorithm displays a relatively progressive increase
in execution time as the number of instances increases. This
shows that GWO performs well in terms of execution time and
can also be considered as a scalable option. Nonetheless, the
results are encouraging for all four algorithms. For instance,
the global ILP method, even for 300 SFC requests, it will
successfully allocate them in approximately 11min. This is
considered fair for a 169-node infrastructure. Additionally, we
have to consider that the particular algorithm is not expected
to be used as an online one but rather as a offline planning
tool for the network operator. Hence, even if an operator re-
plans the network on a daily or even hourly basis, the offline
algorithms can promptly provide the necessary allocations
to be made. The results are even more promising for the
two other algorithms providing 300 allocations in less than
a minute (0.2s per SFC). Thus, they can be used for larger
network infrastructures, where the global ILP is expected to
take notably more time. The GWO stands in the middle with
an execution time that is worse than SeqSort and SeqBiased
but considerably less than the ILP.
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Fig. 6 presents the objective cost for the four algorithms
for an incremental number of SFC requests, showing the
cost comparison for up to 300 requests for a network with
ample communication and computational resources capable
of handling an excess of 300 requests, which is the same
setup used to generate the results in Fig. 5. At a glance, we
observe that the ILP yields the lowest cost, followed closely
by SeqSort and GWO, while SeqBiased is the most inefficient.
Since the network is capable of handling an excess of 300
requests, in this case all methods were able to allocate up to
300 requests successfully in this experiment, i.e., the success
ratio is equal to 1 for all of them. Fig. 7 illustrates the objective
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function’s cost for the four algorithms when the number of
SFCs ranges between 4 and 28. To make the experimentation
more challenging, this time we limit the network’s resources
to accommodate at most 28 requests. As the global optimal,
we see that the ILP obtains again the lowest cost among the
other algorithms, confirming that it delivers efficient solutions.
At the same time, it can be observed that SeqSort provides
solutions very close to optimal for the different numbers of
SFCs considered. This is a propitious behavior as SeqSort
also showcases low execution times. In contrast, SeqBiased
is proven to be less effective, as it shows a steeper increase in
cost as the number of SFCs increases. The GWO algorithm
displays a consistent increase in cost as the number of SFCs
grows, closely approximating the ILP’s cost. Nonetheless, after
12 SFCs, this behavior changes, with GWO demonstrating a
lower cost than ILP. To better understand this behavior, we
must draw our attention to Fig. 8, where the allocation success
ratio is depicted; for up to 12 SFCs, all four algorithms manage
to find a proper placement solution. However, after this point,
GWO (for 16 SFCs), SeqBiased (for 20 SFCs), and SeqSort
(for 24 SFCs) do not manage to accommodate all the requests.
In contrast, the ILP succeeds in finding a possible allocation
for all SFC combinations, even for the configuration with the
28 SFCs, where we have deliberately dimensioned our network
to only have one feasible solution. Thus, the ILP method,
maintains a constant allocation success ratio of 1.

SeqSort also maintains an allocation success ratio of 1
for most of the range. However, the success ratio slightly
decreases to 0.96, 0.95, and 0.92 for 24, 27, and 28 requested
SFCs, respectively, suggesting that the performance deterio-
rates as the number of requested SFCs increases. Similarly,
SeqBiased begins with a success ratio of 1, but as the number
of requested SFCs rises, the success ratio gradually declines.
This suggests that SeqBiased struggles to allocate all of the
requested SFCs when the network is more stressed. Finally, the
GWO algorithm maintains a success ratio of 1 when dealing
with up to 12 SFCs. After that, however, it suffers from a
substantial decline in the success ratio as the number of SFCs
increases, indicating that GWO is not as practical as ILP and
even SeqSort in successfully allocating all requested SFCs
when the problem scales up. Thus, as the acceptance ratio
falls, so does the cost function since fewer SFCs are being
accommodated, which justifies the behavior noticed in Fig.
7. Fig. 7 - Fig. 9 present the trade-off between placement
efficiency and execution time, and how an InP can benefit
from both a global and/or a sequential offline approach.

Fig. 9 compares the four methods under consideration in
terms of how the average E2E delay changes as the num-
ber of requested SFCs increases. For the ILP, the average
E2E delay remains relatively low and stable throughout the
tested range of requested SFCs. For SeqSort, the average
E2E delay increases moderately as the number of requested
SFCs grows. On the other hand, for SeqBiased, the delay
significantly increases with the growth of requested SFCs
compared to ILP and SeqSort methods. Finally, for GWO,
the delay increases notably as the number of requested SFCs
increases, particularly after having more than 20 requested
SFCs. From this figure, it is evident that the ILP method

4 8 12 16 20 24 28

0.2

0.4

0.6

0.8

1

Number of Requested SFCs

A
llo

ca
tio

n
Su

cc
es

s
R

at
io

ILP
SeqSort

SeqBiased
GWO

Fig. 8. Success Ratio analysis.

4 8 12 16 20 24 28
0

20

40

60

80

100

Number of Requested SFCs

A
ve

ra
ge

E
2E

D
el

ay
(m

ill
is

ec
on

ds
) ILP

SeqSort
SeqBiased

GWO

Fig. 9. Average E2E delay analysis.

results in the lowest average E2E delay across all volumes
of requested SFCs, followed by SeqSort. On the other hand,
the SeqBiased and GWO methods exhibit higher delays, with
SeqBiased having the highest average E2E delay among the
four methods. Overall, the global offline ILP can provide the
best performance in terms of cost, success ratio, and E2E
delay, while SeqSort is a viable alternative, approximating well
the performance of ILP while keeping the execution times low.
This makes the particular algorithm a good and fast network
planning tool candidate for an InP.

B. Offline Planning with Online Correction

In this second set of experiments, we use the global ILP
and GWO approaches to offline plan the placements (pre-
allocations) of the VNFs. The global ILP method guarantees
global optimality, but as the input’s size increases, the com-
putational time grows exponentially, making it impractical for
large-scale scenarios. Therefore, we also consider the GWO
approach for offline planning, which converges faster than the
ILP for large-scale problems but may provide near-optimal
solutions instead. In this case, we assume the operator expects
to receive 28 SFCs from specific gateways. Specifically, the
28 preallocated solutions are equally distributed over the four
gateway routers w2, w3, w4, and w5, as shown in Fig. 4.
Hence, at each gateway router, we can access seven preal-



16

TABLE III
DEPARTURE AND ARRIVAL RATES PER SFC TYPE PER GATEWAY ROUTER

λ µ

Type1G2 0.23504524621 0.29850746268
Type2G2 0.37500937523 0.29850746268
Type3G2 0.29850746268 0.29850746268
Type1G3 0.23504524621 0.29850746268
Type2G3 0.37500937523 0.29850746268
Type3G3 0.29850746268 0.29850746268
Type1G4 0.23504524621 0.29850746268
Type2G4 0.37500937523 0.29850746268
Type3G4 0.29850746268 0.29850746268
Type1G5 0.23504524621 0.29850746268
Type2G5 0.37500937523 0.29850746268
Type3G5 0.29850746268 0.29850746268

located solutions as follows: 3 of Type 1 (blue color), 2 of
Type 2 (red color), and 2 of Type 3 (green color). Later, we
proceed with the actual and online incoming SFC requests.
For this dynamic allocation, a traffic generation model was
used to represent the arrival and departures of each type of
SFC at each gateway. Specifically, following the literature, the
interarrival time of each type of SFC at each gateway follows a
Poisson distribution, while the lifetime of each SFC follows an
exponential distribution. The departure and arrival rates used
are shown in Table III, while the simulation lasts for 10000
events (arrivals and departures). In this table, λ represents
the arrival rate of service requests, and µ the service rate at
which these requests can be processed. The inclusion of these
parameters is intended to provide insight into the network’s
capacity and performance under different load conditions.

Based on this modeling, the efficiency of the three ap-
proaches presented in Section IV-B is assessed in terms of
blocking probability and execution time. The execution time
is broken down to offline execution time (static computational
time), accounting for the average execution time per SFC
during the offline allocation, and online computation time
(dynamic computational time), accounting for the average
execution time when an incoming SFC cannot fit any available
preallocation and a new solution must be found in real-time. In
this set of experiments, the available capacity of the physical
infrastructure was set to accommodate more than 28 SFCs, in
order to show that even when a poor estimation of the total
simultaneous SFCs that will coexist is made, the corrective
actions of the online placement can remedy the situation.
Besides, it is hard to precisely determine the exact number of
preallocated solutions we can fit in the network, as it depends
on the SFC demands and their distribution.

Fig. 10 illustrates the results, where the left y-axis rep-
resents the percentage of the blocking probability and the
right y-axes the execution times in seconds. This figure shows
the results of using four approaches; the first two methods
(ILP Pre-Allocations and GWO Pre-Allocations) are meant
for offline preallocation, using the global ILP and GWO,
respectively; the other two methods cater for offline planning
with online correction. The ILP Pre-Allocations & online-
ILP uses the single SFC ILP method for online correction,
whereas the ILP Pre-Allocations & Greedy approach uses
the greedy method, as presented in Section IV-B. The two

preallocation methods showcase the worst blocking probability
since when an incoming SFC cannot fit to a preallocated
solution, it gets rejected. GWO Pre-Allocations has a higher
blocking probability than ILP Pre-Allocations because the
former found only 18 pre-allocations instead of 28. It should
be noted that if the operator had made an estimation of the
arrival of the SFCs with an accuracy of 100%, the blocking
probability would be 0% for the ILP Pre-Allocations, as shown
in Fig. 8. However, we wanted to show how combining offline
and online algorithms could resolve an inaccurate prediction.
Regarding the execution time, the online part practically
accounts for 0s since no algorithm is executed, but rather
the solution of the offline allocation is used; the average
offline execution time per SFC is around 1.48s for ILP, and
0.65s for GWO. In contrast, when employing the preallocation
plus the online ILP or the Greedy SeqBiased heuristic, the
blocking probability is considerably reduced by more than
half. In particular, for the ILP preallocation & online ILP
mechanism, the blocking probability is reduced by 54% while
adding an average execution time overhead of only 0.17s per
SFC. Similarly, the ILP preallocation & Greedy mechanism
reduces the blocking probability by 46% with an average
online execution overhead time of 0.12s. Interestingly, the
online ILP version can efficiently find an alternative solution
when all pre-allocations are used at practically the same time
as the greedy approach.

C. Infeasibility Restoration Planning

In this final part of the evaluation, to assess the perfor-
mance of infeasibility restoration mechanism, we consider
the applicability of the model when a bulk number of SFCs
have to be planned before their actual arrival. As stated in
Section V, the infeasibility restoration guides the operator
on where additional resources are needed to be added in
order to accommodate the total anticipated demand. Fig. 11
compares the three proposed algorithms, namely, ShuffleFilter,
CostBased, and ElasticHeuristic, for an increasing number of
SFCs, while using the network topology called Reduced-50, a
reduced version of Metro-169 with 50 nodes [25], as shown in
Fig. 4. Here, the x-axis represents the number of SFCs to be
planned, ranging from 1 to 50, with a step of 10, and the y-axis
represents the repair cost. The SFCs are of different types and
are equally distributed across the four gateway routers of the
network. To take an extreme scenario, we have set the physical
network to be able to accommodate only one type of SFC.
Hence, only when 1 SFC is planned to be allocated will the
ILP produce a feasible solution. The model will be infeasible
for all other combinations, and the three algorithms should
suggest where to add the necessary resources. As expected,
the ElasticHeuristic provides the best repair cost. What is
interesting is that the ShuffleFilter algorithm can also find
a repair with a cost very close to the optimal. Additionally,
as the number of SFCs increases, the repair cost increases
relatively linearly. In contrast, the CostBased heuristic presents
the highest cost and the worst performance since it cannot
properly assess the impact of a violated constraints in a set of
IISes, the way ShuffleFilter does.
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Fig. 10. Simulation results for online assisted pre-allocations.
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Fig. 11. Repair Cost of ShuffleFilter VS CostBased VS ElasticHeuristic.

In terms of repair time, as illustrated in Fig. 12, ShuffleFilter
proves to be the most computationally expensive algorithm.
This was expected since this algorithm must find multiple
IISes for each iteration, meaning that the ILP algorithm had
to be rerun several times at each cycle, which resulted in a
very high execution repair time. Moreover, as the number of
instances increases, its repair time increases steeply, indicating
that it is less suitable for large-scale problems than the other
two algorithms. In contrast, this time, the CostBased approach
achieves considerably lower repair times, showing that it is
highly scalable. Hence, these two IIS repair approaches create
a trade-off between the repair cost and repair time. Once more,
the ElasticHeuristic produces the best solution in the least
amount of time since the ILP is being run only once and
simultaneously indicates where the additional resources should
be added. Since in Fig. 12 the high repair times of ShuffleFilter
do not allow for a good assessment of the difference between
CostBased and ElasticHeuristic, we re-plot the figure only for
the two last algorithms, as shown in Fig. 13. As seen here,
ElasticHeuristic is much faster and efficient than CostBased,
while the execution time gap between them increases with the
number of SFCs.

After validating the efficiency of the ElasticHeuristic in
terms of both repair time and repair cost, we evaluate how
the algorithm behaves for different infrastructure sizes. Specif-
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Fig. 13. Repair Time of CostBased VS ElasticHeuristic.

ically, Fig. 14 is a graph comparing the repair time for three
different network topologies, Metro-169, Reduced-50, and
Abilene-12, a small network with only 12 nodes [25], using
the ElasticHeuristic algorithm. As expected, the Metro-169
network, has the highest repair time among the three networks.
As the number of instances increases, its repair time increases
relatively steeply, indicating that repairing the infeasibilities in
this more extensive metropolitan network takes significantly
longer than in the other two networks. However, the total
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Fig. 14. Repair Time of Metro-169 VS Reduced-50 VS Abilene-12 using
ElasticHeuristic.
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Fig. 15. Repair Time of Reduced-50 VS Abilene-12 using ElastiHeuristic.

time needed is quite short, with the algorithm being able to
provide a repair solution in only 90s. We should not forget
that this tool is an offline planning tool that provides feasibility
restoration recommendations to the provider. To better grasp
the added complexity of restoring the feasibility when moving
from a small network, such as the Abilene-12 to a medium-
sized network, such as the Reduced-50, we re-plot the figure
only for the two last topologies, as shown in Fig. 15. The graph
demonstrates that the ElasticHeuristic needs approximately
half the time for the Abilene-12 infrastructure than for the
Reduced-50 infrastructure.

VII. CONCLUSION AND FUTURE WORK

VNF placement in edge/cloud environments has become
increasingly popular, leading to the need for efficient service
function chaining placement mechanisms. In this paper, we
proposed a three-part holistic network planning tool for SPs
and InPs that aims to establish versatile solution strategies for
VNF placement and feasibility repair that considers offline
planning, online corrective actions, and suggestions for locat-
ing and repairing potential placement infeasibilities. Specif-
ically, first, an offline, proactive SFC placement mechanism
was developed that optimally allocates the physical resources
of the infrastructure based on expected workload demands.

The mechanism aims to minimize the number of Edge servers
utilized for VNF placements, as well as the communication
cost, in terms of number of links used to interconnect them.
Following, we devised two heuristic algorithms to solve the
formulated ILP problem to avoid computationally intractable
situations. This offline mechanism was followed by an online,
reactive SFC placement mechanism that corrects potential
mispredictions in the incoming workload. Finally, a novel
infeasibility restoration mechanism was implemented to com-
plement the offline SFC planning step, alleviating resource
mismatches between the infrastructure’s total capacity and
the requested resources of the expected SFC requests. Three
approaches were examined for this component, aiming to min-
imize the induced capital and operational expenses. Extensive
simulations demonstrated the effectiveness and efficiency of
the proposed mechanisms through numerical results under
different configuration scenarios. The feasibility restoration
tool was also benchmarked on its accuracy and cost minimiza-
tion. Future work will focus on complementing the proposed
planning tool with machine learning techniques that will learn
SFC request patterns and user behaviors in order to predict the
number and location of incoming requests more accurately.
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