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Abstract—In the era of 5G/6G networking, the complexity
and scale of modern cellular networks have increased signif-
icantly. Consequently, the volume of generated logs has also
multiplied, making comprehensive anomaly detection a cum-
bersome task for operators. In response, this article presents
the Radio Log Anomaly Detection (RLAD) architecture, an
MLOps-driven pipeline designed to enable automated, end-to-
end anomaly detection in log data from next-generation networks.
The key contribution lies in a design that integrates continuous
training, deployment, and performance monitoring mechanisms
to mitigate data drift and ensure model relevance in dynamic tele-
com environments. The architecture also addresses the practical
challenges of labeled data scarcity and class imbalance, enabling
robust detection even in unsupervised settings. As a proof-of-
concept, we instantiate the pipeline with a lightweight LSTM
autoencoder enhanced with attention, achieving 98% accuracy,
99% F1-score, and a 99% precision while outperforming a
baseline LSTM. The system delivers anomaly insights via a
user-friendly interface that supports operator diagnostics and
feedback integration.

I. WHY IS A 5G/6G LOG ANOMALY DETECTION
ARCHITECTURE IMPORTANT?

W ITH the emergence of 5G and beyond networking,
the complexity and scale of modern cellular infras-

tructures have multiplied. In this environment, a single hard-
ware anomaly can disrupt the services of millions of users.
Therefore, accurate and timely anomaly detection is crucial
for mitigating losses for infrastructure providers [1]. To this
end, telecom operators commonly monitor the RAN, transport,
and core parts of the network, generating logs describing
various runtime events at different levels and processes. With
the virtualization of 5G/6G components, multiple monitoring
and detection functions, can efficiently coexist within a uni-
fied, service-based architecture. This architectural flexibility
enables seamless integration of telemetry data streams with
anomaly detection pipelines. These logs and telemetry data

thus become valuable sources for diagnostic tasks, including
identifying vulnerabilities, performance anomalies, and pre-
dicting failures and errors [2].

As cellular networks have progressed from small to large-
scale infrastructures, the log data generated by the network
hardware has similarly evolved. Initially consisting of sim-
ple sequential values, logs have transformed into complex,
unstructured data containing significant amounts of text and
numerical information [3]. This data is generated automatically
by the operating system and processes running on infrastruc-
ture hardware.

The difficulty of log data processing lies in the non-
structural characteristics of the data itself and its temporal
correlation. Anomaly detection using rule-based algorithms
has been proposed to mitigate human error, yet such method-
ologies still necessitate human intervention. Consequently,
active research is underway to develop complementary real-
time monitoring-based anomaly detection systems leveraging
machine learning, thereby enhancing automation and scalabil-
ity [4]. For instance, Almodovar et al. [5] employ a fine-tuned
BERT-based language model to capture linguistic patterns
in logs while Guo et al. [6] introduce a transformer-based
model. However, these methods require substantial computa-
tional resources due to their high parameter count, memory
consumption, and inference latency. In contrast, the authors
in [7] propose a framework that employs Machine Learning
Operations (MLOps) for streamlining the machine learning
anomaly detection lifecycle in next generation networking
environments, specifically in an Open5GCore implementation
by benchmarking models like LSTM, MLP, and One-Class
SVM. Similarly, in [8], the authors investigate an automated
log anomaly detection workflow based on machine learning
and natural language processing such as autoencoders and
Self-Organizing Maps (SOM), for identifying root causes of
failures and vulnerabilities. The evaluation here is performed
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among eight widely adopted anomaly detection models.

Despite the tremendous value buried in cellular network
logs, how to analyze them effectively remains a great chal-
lenge. We mainly identify the following challenges:

1) Template Identification and Extraction: As every other
log type, cellular logs are a sequence of events produced
by hardware and software processes. As such, each
log message consists of a combination of semantic and
numerical information. The challenge here is to identify
the constant semantic part, i.e., the template of the
message, and extract the variable, usually numerical part
which differs with each logged event. Then, properly
trained anomaly detection models can capture temporal
dependencies in sequences of these two parts and de-
tect anomalies based on unexpected patterns. However,
the diverse nature of cellular logs that are generated
across multiple components and processes with varying
formats, further complicates the accurate extraction of
templates and requires advanced methods to handle
inconsistencies across diverse log processes.

2) Dataset/Class Imbalance: In 5G/6G infrastructures,
class imbalance is a prominent challenge due to the
inherent characteristics of these systems. Due to the
massive scale of deployed components and the con-
tinuous, high-volume generation of cellular logs, true
anomalies or failures are relatively rare/underrepresented
events. Modern network components are designed to be
highly resilient and self-healing, which results in a nat-
ural scarcity of reported or observable failure instances.
Consequently, datasets are often dominated by logs
representing normal behavior, leading to a significant
skew in class distribution. This imbalance hinders the
performance of anomaly detection models by making
them overly sensitive to the dominant (normal) class.
Moreover, it can impair the model’s ability to generalize
to unseen or emerging anomalies, which is particularly
important in dynamic and evolving environments such
as 5G/6G networks.

3) Labeled Data Scarcity: In legacy industries such as
telecommunications, the incentive towards log data la-
beling has been low until the recent machine-learning-
induced disruption. Still, the relatively high cost and
tedious labor required, makes obtaining labels for 5G/6G
logs a challenging task that constitutes the training and
use of supervised anomaly detection models impractical.

4) Data Drift: As network components are upgraded or
replaced, whether at the hardware, firmware, or software
level, log formats may change, new log features may be
introduced, and existing ones may be deprecated. These
changes result in a shift in the statistical properties of
the data over time, leading to a mismatch between the
data distributions used during model training and those
observed in production. Such discrepancies degrade the
performance of trained anomaly detection models, which
rely on the assumption that input data during inference
resembles the training data. Without mechanisms for
adaptation, this drift can significantly hinder a model’s

sensitivity to emerging or evolving anomalous behaviors.
To overcome these challenges, in this work we propose

RLAD, an end-to-end smart Radio Log Anomaly Detection
architecture for next generation networks. To the best of our
knowledge, RLAD is the first systematic architecture proposed
for log-based anomaly detection in cellular networks that will
allow troubleshooters in the telecommunications area to work
rapidly and with less system knowledge. Specifically, we make
the following twofold contribution:

• We propose the RLAD architecture as the first end-to-
end cellular log anomaly detection framework specifi-
cally designed around an MLOps-based pipeline [9]. Its
novelty lies in systematically automating model lifecycle
management through Continuous Training and integrated
performance monitoring, enabling immediate response to
data drift and real-time retraining, triggered by observed
performance degradation and operator feedback. Addi-
tionally, our architecture facilitates Continuous Integra-
tion/Continuous Delivery (CI/CD) operations, ensuring
that its components and models remain up to date with the
latest insights from independent controlled experiments.
In this way, we reduce the need for manual intervention,
but also operational costs associated with maintaining
model relevance in the highly dynamic networking field.

• To overcome labeled data scarcity and imbalance, we ad-
vocate for the adoption of unsupervised machine learning
models for the semantic based anomaly detection. We
modify off-the-shelf log parsers to automate the separa-
tion of the semantic and the numerical part of the mes-
sages. As an instantiation of the proposed architecture, we
employ LSTM and attention-based autoencoder models
to analyze the log message sequences from different
hardware entities. This choice illustrates how RLAD can
support models that capture latent temporal and structural
patterns in real-world log templates, while maintaining
operational efficiency.

The rest of the paper is structured as follows. Section II
presents the proposed RLAD Architecture. Section III demon-
strates the efficiency of the architecture through a proof-of-
concept case study. Section IV provides few future directions
and open challenges, while Section V concludes the paper.

II. THE RLAD ARCHITECTURE

An overview of the proposed RLAD architecture is illus-
trated in Fig 1. To accommodate the end-to-end automated
anomaly detection in 5G and beyond network infrastructures,
we design this architecture inspired by the MLOps concept;
unlike traditional anomaly detection approaches, which typi-
cally involve sporadic updates and manual retraining, RLAD
continuously monitors performance drift and automatically
retrains and redeploys anomaly detection models in real-time.
To achieve this, the proposed architecture is structured into
five distinct functional layers, each facilitating the process flow
from data generation to delivery to telecom operators.

A. Log Collection
Next-generation networks comprise multiple subsystems,

components, and interfaces, each generating heterogeneous
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Fig. 1. RLAD Architecture Overview

and voluminous log data structured in time-series format.
Cellular logs include automatically generated sequential mea-
surements from hardware processes, such as antenna power,
signal strength, and synchronization delays. We use two ways
of classifying them depending on their nature: i) seman-
tic/linguistic data and ii) numerical data. Usually, in a single
log message we find data belonging to either or both of these
two classes. Specifically, we typically encounter descriptive
information, error messages, event descriptions, and contextual
details mixed with timestamps, error codes and numerical met-
rics. Combining both data types improves anomaly detection
robustness by leveraging their complementary characteristics.

Due to dynamic data processing demands, log collection
components must be flexible and scalable. On the client side,
distributed ingestion agents collect logs from 5G/6G network
elements (e.g., gNB, network devices, COTS servers) and pub-
lish events to a central streaming platform. A workflow orches-
tration component polls the streaming platform for specific
events (e.g., new log data arrival from specific source). This
component subsequently triggers the execution of a workflow
that extracts the data, pre-parses them in a format appropriate
for the Storage solution and then stores the logs. This Log
Pre-Parsing component serves as a preparatory step for
storing the log data in a way that optimizes the subsequent
anomaly detection analysis. During this process, the collected
data are cleaned and formatted by standardizing their structure
to ensure consistency. This includes the designation of key
attributes regarding the source of the data such as radio types,
device releases, software versions and product numbers.

B. Storage

We utilize cloud-based storage to meet scalability and
flexibility requirements by dynamically adjusting storage for
high-volume logs. An integrated analytics and search platform
indexes and retrieves data efficiently; these capabilities not
only support the smooth flow of data to the Log Anomaly
Detection component but also facilitate controlled exper-
imentation and validation for maintaining and updating the
framework’s source code (CI/CD). Lifecycle management
policies are also configured to manage data effectively and
ensure that older data are appropriately archived or purged in

alignment with compliance and operational efficiencies. On the
one hand this reduces the overhead for managing the physical
infrastructure and on the other it aligns with the elastic and
distributed nature of modern infrastructures.

C. Anomaly Detection

The Log Parsing component initiates the anomaly de-
tection pipeline and can be triggered either by operator input
(for testing) or by the Performance Monitoring auto-
mated workflow (for training). Accordingly, its data input is
a log file, i.e., a collection of time-series cellular log data
for analysis, or a batch of data from the Storage. Each
invocation of the Log Parsing component is parameterized
by the characteristics of the source of the log data, as well
as the model that the data are going to train or be tested
against. It parses stored log data, extracting numerical and
semantic features and structuring them into log templates
(see Fig. 2) A log template is the constant part of the log
message that does not depend on the internal parameters that
the system is considering at the time of generating the mes-
sage. Complementary to this, logs are sorted chronologically,
grouped by generating processes, and split into sessions. The
subsequent Log Embedding captures semantic relationships
by vectorizing logs in a high-dimensional space for analysis.

If the workflow is initiated for training, the Model
Training component is triggered. In our implementation
we leverage the unique capabilities of LSTM and attention-
based autoencoders to handle semantic and sequential patterns

Fig. 2. Log Parsing Example
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Fig. 3. LSTM-Attention -based Autoencoder Model for Anomaly Detection

within the hardware log data, as shown in Fig. 3. This
approach is effective for log analysis because LSTM captures
the temporal dependencies inherent in sequential log data, and
the attention mechanism further enhances learning by enabling
the model to focus on the most relevant parts of the input
log sequence, improving its ability to detect subtle anomalies.
The model effectively reconstructs normal log sequences and
flags deviations, making it powerful for unsupervised anomaly
detection in log data without the need for labeled training
data. During training, estimators are fitted to model the time
series data. During inference, the anomaly score is calculated
through the difference between the predicted and actual value
for that time point. To achieve higher accuracy, we main-
tain various versions of the autoencoder models, specifically
trained on log datasets that correspond to the various versions
of the cellular hardware/software. In this way, we ensure
that the anomaly detection process is tailored to the spe-
cific equipment characteristics. Additionally, our Continuous
Training approach ensures models remain updated with new
data, equipment versions, and network configurations; it is
triggered automatically by new data collected in the Log
Storage, performance drift reported by the Performance
Monitoring component, or code updates (CI/CD pipeline).
We note that the architecture remains agnostic to the specific
model used, allowing for future integration of more advanced
or specialized learning techniques as needed.

The newly trained models are evaluated by the Model
Evaluation component using performance metrics tailored
to their specific roles. A threshold for anomaly detection is
determined based on the 99th percentile of reconstruction
errors from both training and test data, allowing the model
to identify deviations from normal behavior. Next the model
reconstructs the test data, and the reconstruction errors are
calculated. Instances with reconstruction errors above the
threshold are classified as anomalies. The evaluation is done
in such a way that predictions from the model are compared
against ground truth labels (anomalies or normal), and metrics
such as accuracy, precision, recall, and F-score are calculated

to assess the performance of the anomaly detection model. Fol-
lowing the evaluation, the Model Validation component
verifies that performance metrics meet pre-defined acceptance
thresholds for operational deployment. It also checks for
overfitting, compatibility with deployment environments, and
consistency across retraining iterations before the model is
registered. The Model Registry, a cloud-based solution,
stores model versions alongside their training environments
and dependencies, ensuring traceability and reproducibility.

Finally, the Performance Monitoring component
continuously tracks key metrics such as model reconstruction
error trends, inference latency, and resource utilization. Per-
formance degradation is flagged when the reconstruction error
distribution for incoming logs shifts significantly compared
to the model’s baseline (e.g., a sustained increase in the
99th percentile of reconstruction errors). In addition, drops
in precision/recall on feedback-labeled data, or a significant
divergence between training-time and serving-time behavior
(training-serving skew), also act as triggers. These alerts
initiate automatic retraining workflows or notify operators for
manual inspection. Operator feedback via the GUI is also
incorporated as validation input for monitoring model drift.

D. Serving

The Inference component applies trained autoencoders
to analyze incoming logs. It selects the appropriate model
version, calculates reconstruction errors for subprocesses, and
compares these errors against thresholds. Instances exceeding
thresholds are flagged as anomalies; otherwise, they are clas-
sified as normal. RLAD also provides a GUI for telecom-
munication operators to easily interact with the anomaly
detection process. Operators upload log files and specify
essential metadata, such as hardware/software versions and
equipment type. Through the Inference component the
appropriate model from the Model Registry is selected,
the logs are processed, and the GUI visually displays anomaly
scores, highlighting potential issues clearly. It also generates
a downloadable report summarizing detected anomalies and
recommended actions. Additionally, operators can provide
feedback directly through the GUI to enhance future anomaly
detection accuracy.

E. Continuous Integration & Continuous Deployment (CI/CD)

The CI/CD pipeline is a critical component that en-
sures the seamless integration, testing, and deployment of
the log anomaly detection architecture components. Here,
the Development & Experimentation component is
responsible for the continuous refinement and testing of new
anomaly detection approaches. It supports iterative experimen-
tation by allowing researchers to prototype updates to the
Anomaly Detection pipeline in a controlled environment.
Once these updates pass initial validation, the Analysis
component evaluates their effectiveness through quantitative
and qualitative assessments, including performance, resource
efficiency, and deployment impact. If results are satisfactory,
the corresponding source code is committed to a version-
controlled repository for traceability and collaboration. Then,
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the Pipeline Building & Testing component per-
forms automated testing processes to verify the the correctness
and effectiveness of the updated source code. Tests ensure
compatibility and verify performance improvements, prevent-
ing regressions and degradation in detection capabilities. After
successful testing, pipeline components are packaged into
deployable software artifacts, ensuring consistency and simpli-
fying the deployment process. Finally, the prepared packages
are automatically deployed into the production environment
through the Pipeline Deployment component. This is an
automated process, ensuring quick updates, efficient scaling,
and minimal manual intervention. Continuous monitoring and
feedback loops then restart the CI/CD cycle, promoting agility
and robustness in the RLAD architecture.

III. CASE STUDY: SEMANTIC RADIO ANOMALY
DETECTION

We hereby conduct a preliminary implementation and evalu-
ation of the RLAD architecture, as envisaged in this work. The
whole infrastructure was deployed on a proprietary Ericsson
Kubernetes cluster. For publishing the availability of new
log data from the client side, the Apache Kafka distributed
messaging system was used. To orchestrate the triggers of
Log Collection, Storage, Anomaly Detection
and CI/CD pipelines, the open-source container-native work-
flow engine Argo was utilized. Specifically for the CI/CD
pipeline, GitLab was used as the source code repository
solution while the packages were managed through JFrog.
The Storage was implemented as an AWS S3 instance with
an integrated OpenSearch platform for searching, aggregating,
viewing, and analyzing the log data in a human friendly way
whenever needed. The GUI was implemented using JavaScript
and HTML/CSS. The rest of the architecture components were
implemented using in-house solutions.

Building on deployed components, we now walk through
each stage of the RLAD pipeline to highlight how the logs
flow through the system from ingestion to delivery of anomaly
insight. The pipeline starts with real-time log streaming from
5G radio equipment into the Apache Kafka message bus,
initiating the flow from raw data to anomaly detection. Since
raw log lines are unstructured and difficult to analyze directly,
Log Parsing invokes Drain [10], which is a rule-based
parser that converts logs into structured templates. Drain builds
a parse tree where each path represents a log pattern, matching
token-by-token incoming log lines. If no match is found, a
new template is created. To further enhance this process, we
apply time-process windowing, grouping events from the same
process into one-second intervals to capture inter-process rela-
tionships and temporal structure. The parsed logs then undergo
Log Embedding, where they are converted into fixed-length
sequences of 12 tokenized events. These sequences are then
passed to Inference component, which uses an LSTM-
based autoencoder enhanced with an attention mechanism. The
model is trained on normal logs collected from 500 historical
files recorded in 2024, covering 5G processes such as Transmit
Linearization (TXL), Radio Interface Control Remote (RICR),
Antenna Module (AntMod), Transmit (TX) and Receive (RX)

process. Each file contained 5000 − 30000 log lines that
are positive samples (logs without anomalies). Training is
performed over 100 epochs with early stopping (patience =
3), using the Adam optimizer with a learning rate of 0.0001
and a batch size of 64. The architecture includes two LSTM
layers for encoding and decoding sequences, both with input
and output dimensions of 12.

During inference, the model flags sequences with high
reconstruction errors as anomalies, indicating deviations from
normal patterns. In our study, such anomalies reflect real-
world issues frequently observed in 5G radio logs, includ-
ing configuration mismatches, hardware malfunctions, signal
transmission errors, and unexpected resets, especially within
the RICR process. These events often manifest as unusual
log sequences or abrupt terminations of expected patterns,
affecting approximately 2–4% of all sequences. Although
infrequent, they are critical to detect early, as they can lead to
service degradation or even system failure. To assist operators
in responding promptly, detected anomalies are displayed in
a GUI with timestamps, affected subsystems, and surrounding
log context. This interactive interface enables engineers to
investigate irregularities quickly and take corrective action.

Table I provides the performance of the proposed LSTM and
attention-based model (LSTM ATT) and the baseline LSTM
[11] model from the literature. We chose LSTM with attention
for its balance of efficiency and temporal modeling, making
it suitable for real-time telecom environments. While models
like Transformers or CNNs show promise, they either require
more resources or lack temporal sensitivity. Our evaluation
focuses on a baseline LSTM to isolate the contribution of
the attention mechanism and align with existing MLOps-based
log analysis pipelines, where direct model-level comparison is
often impractical due to differing scopes.

Our model is capable of achieving 98% accuracy, 99%
precision, 98% recall and 99% F1 score compared to the
simple LSTM model. The attention mechanism contributes
significantly to the improved performance. Radio logs exhibit
temporal dependencies where anomalies are related to specific
sequences of events over time. While LSTM models are
effective at capturing these dependencies, they can struggle
with long-term dependencies due to the vanishing gradient
problem. The attention mechanism overcomes this limitation
by explicitly capturing both short and long-term dependencies
more effectively. We also plot the confusion matrix for the
autoencoder-based methods in Fig. 4. The left subplot shows
LSTM ATT and the right plot depicts the simple LSTM
model. These results are shown for the RICR process and
anomalies are detected at the subprocess level that contain the
problematic anomalous logs within the RICR process. The
confusion matrix helps us assess how accurately our model
classifies the subprocesses as normal or abnormal. We see that
the LSTM ATT model outperforms the simple LSTM model
as evidenced by the low false positives and negatives.

Regarding computational requirements, training the LSTM
with attention model for 10 epochs on 500 logs takes ≈ 200s
on an RTX 4060 GPU (8 GB RAM). Once trained, inference
on a full test set takes ≈ 6s, which is a slightly increased
compared to the baseline LSTM (with a 88.6% accuracy and
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TABLE I
PERFORMANCE EVALUATION OF AUTOENCODERS BASED ANOMALY

DETECTION MODELS

Models Accuracy Precision Recall F1-score
LSTM ATT 0.9888 0.9943 0.9875 0.9907
LSTM [11] 0.8856 0.9880 0.8206 0.8965

Fig. 4. Confusion Matrix of Autoencoder-based Anomaly Detection Models

89.6% F1). However, the significantly improved accuracy and
robustness to complex log sequences justifies the slight compu-
tational overhead, while not affecting its suitability for periodic
retraining and integration into near real-time monitoring.

We acknowledge that evaluating beyond model performance
is important. Scalability and computational efficiency are key
for the RLAD deployment. Its horizontally scalable design
(Kafka, Argo, AWS S3/OpenSearch) supports high throughput
via resource scaling and parallel processing. RLAD’s mod-
ularity allows independent replacement of components (e.g.,
Drain parser, anomaly detection model) and enables extension
to multi-process and multi-node setups without pipeline mod-
ifications. Furthermore, the system allows for asynchronous
inference and model updates, facilitating continuous learning
and deployment in dynamic network environments. This archi-
tecture makes the system adaptable to the demands of large-
scale deployments, where telecom equipment can generate
millions of log lines per second. Although a detailed ablation
study is not our scope, it represents valuable future work for
validating the system’s adaptability.

IV. APPLICATIONS, FUTURE DIRECTIONS & OPEN
CHALLENGES

A. Applications

RLAD’s design enables its deployment across a wide range
of real-world 5G/6G scenarios where automated anomaly
detection is critical for security, performance, and reliability.
Below, we highlight representative use cases:

a) Cybersecurity: RLAD supports zero trust network
management by continuously learning what constitutes “nor-
mal” behavior and autonomously flagging subtle deviations,
including those arising from AI-driven or peer-to-peer attacks
in distributed 6G architectures.

b) Performance Optimization: In smart city infrastruc-
tures, RLAD can integrate with joint communication and
sensing (JCAS) components for 6G networks [12], identifying
propagation anomalies, such as obstructions, enabling correc-
tive actions like beam steering or dynamic link switching.

c) Reliability & Maintenance: RLAD can be integrated
into 5G Radio Dot [13] IIoT systems to enable predictive
maintenance by detecting early signs of malfunction or degra-
dation, reducing downtime and enhancing safety.

B. Future Directions

a) Edge Inference: To implement the above scenarios,
RLAD needs to be streamlined for the the inference part to be
deployed at the network Edge, where feasible. This research
will involve exploring Edge AI approaches, i.e., deploying AI
algorithms and models on edge, resource-constrained devices.

b) Real-time Operations: Another interesting direction
involves combining in-switch and in-controller anomaly detec-
tion, in an in-network ML fashion (e.g., P4-programmable data
planes, eBPF) and utilizing specialized hardware accelerators
(FPGAs, ASICs, SmartNICs) to enhance the RLAD model’s
real time inference capabilities with data-plane-native imple-
mentations, enabling low-latency, in-situ anomaly detection.

c) Privacy: To enhance privacy preservation, another
research direction could involve extending the current MLOps
pipeline into a Federated Learning Operations (FLOps) frame-
work that orchestrates decentralized model training across
distributed RAN nodes, allowing the models to be updated
from local data at each site without requiring raw data central-
ization. This will reduce latency and bandwidth usage overall
in the network, but also enhance data privacy and security,
as sensitive information will remain localized to the clients’
premises. Collective knowledge from multiple devices will be
aggregated to improve overall model accuracy and robustness.

d) Autonomous Decision Making: To automate simple
corrective actions for common network anomalies, a Deep
Reinforcement Learning (DRL) component could be integrated
to enrich the framework with decision-making capabilities.

e) Digital Twins: A Network Digital Twin (NDT) fed
with real-world network telemetry (i.e., logs) could simu-
late diverse disruption scenarios and safely train DRL-based
remediation strategies under realistic conditions before live
deployment [14]. Such strategies can for example include the
data plane automatically rerouting traffic before an outage,
based on anomaly predictions (i.e., self-healing).

C. Open Challenges

Besides the benefits and opportunities mentioned above,
some vital open challenges are yet to be explored for the
RLAD architecture to reach its full potential:

a) Integration with Existing Network Control Frame-
works & Real-Time Constraints: The RLAD architecture must
seamlessly integrate with existing network control frameworks
(e.g., O-RAN’s near-RT RIC) while meeting strict real-time
anomaly detection deadlines. Achieving interoperability via
standard interfaces without sacrificing detection latency often
requires specialized xApp designs or hardware acceleration.

b) Zero Trust & Secure Decentralized Detection: Ap-
plying Zero Trust principles in a decentralized RAN anomaly
detection context (e.g., FLOps) implies that no network com-
ponent or xApp can be implicitly trusted. This requires clearly
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defined enforcement boundaries and per-component authenti-
cation to confine even agentic ML/RL-based xApps to mini-
mal privileges. Enforcing such strict isolation while enabling
effective cooperative detection remains an open challenge.

c) Responsible AI & Architectural Compliance: Ensuring
RLAD aligns with industry frameworks (e.g., the AI-RAN
Alliance’s reference architecture [15]) and upholds responsi-
ble AI design principles is another challenge. This includes
incorporating model explainability (XAI) and governance into
its design and verifying that the system’s behavior adheres to
the guidelines for ethical AI-driven RAN practices.

V. CONCLUSIONS

The increasing complexity and scale of 5G/6G networks
have necessitated the development of advanced mechanisms
for anomaly detection within telecommunications infrastruc-
tures. To address this need, we present RLAD, an end-to-
end smart Radio Log Anomaly Detection architecture for
5G/6G network infrastructures. The proposed architecture
leverages a Machine Learning Operations (MLOps)-based
pipeline that ensures continuous training and deployment,
thereby mitigating data drift and maintaining model relevance
over time. Our primary contribution lies in the design of
this automated and operationally integrated pipeline, which
supports scalable and real-time log anomaly detection. As a
demonstration, we instantiate the architecture with LSTM and
attention-based autoencoder models for log analysis, providing
an effective solution for unsupervised anomaly detection in
sequential log data. Evaluation of our prototype shows that the
LSTM with attention model delivers strong anomaly detection
performance, achieving 98% accuracy, 99% F1-score, and a
99% precision significantly outperforming the baseline LSTM
model. Future work will include exploring the potential use of
Large Language Models (LLMs) as an enhanced, linguistics-
based log anomaly detection solution for our architecture.
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nologie Supérieure (ETS), Montreal, Canada. He received his Ph.D degree in
Electrical and Computer Engineering from the National Technical University
of Athens, Greece, in 2015.

Ioannis Lambadaris (Member, IEEE) received a Ph.D. degree in Electrical
Engineering from the University of Maryland, College Park, MD, USA in
1991. He joined the Department of Systems and Computer Engineering
in Carleton University in September 1992. Currently, he is a Chancellor’s
professor in the same department.


