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Abstract—Modern networking paradigms like Service Func-
tion Chaining (SFC) allow for services to be broken down to
a series of ordered and interconnected Virtualized Network
Functions (VNFs) that can be hosted in generic servers in Edge-
Cloud datacenters. Nonetheless, a critical issue arises, when
a hardware or software failure occurs and the VNFs of an
SFC need to be repositioned, allowing to autonomously bring
the system back to its normal operation, a process called self-
healing. In this paper, a distributed methodology is proposed that
aims to address this challenge, considering the requirements of
all involved actors. Specifically, a Reinforcement Learning (RL)
based algorithm is proposed that allows to iteratively optimize
and determine an SFC healing solution upon a datacenter
failure. As a second stage, a revenue-driven resource allocation
mechanism is integrated, to resolve the contention for resources in
an already functional datacenter that potentially occurs due to the
repositioning. Various simulation scenarios prove the efficiency
of our proposed resilient healing mechanism.

Index Terms—SFC, Optimization, Self-Healing, Edge/Cloud
Computing, Reinforcement Learning, Resource Allocation.

I. INTRODUCTION

The new and upcoming 5G and IoT networks make the
Quality of Service (QoS) and Experience (QoE) requirements
stricter, while the densification of applications and devices
has resulted in an unprecedented need for automatic network
service delivery. Thus, modern networks should be able to
be flexibly adapted and adjusted according to the types of
services being requested and the requirements of the end-
users. To this end, Network Function Virtualization (NFV)
and Service Function Chaining (SFC) create a new network
paradigm that allows the flexible deployment and configuration
of network services [1], while through appropriate orches-
tration mechanisms [2] can guarantee the automatic lifecycle
management of network services. An open challenge in this
automatic management is how network services deployed as
SFCs can be quickly and efficiently self-healed in case of a
network failure. This is particularly important since network
outages, which occur with a probability that lies between
60-99.8% [3], can affect the user experience and adversely
impact the service continuity. This paves the way towards new
self-healing techniques complemented with telemetry, failure
detection and resolution capabilities [4].

The SFC self-healing has been recently explored in the
pertinent literature. Apart from SELFNET [4] which focuses

on predicting network failures, other management frameworks
that enable autonomic network functionalities have been pro-
posed, such as in [5] and [6]; runtime SFC traffic rerouting and
VNF dynamic redeployment are proposed there respectively.
To theoretically formulate the placement and SFC Self-Healing
problems, Reinforcement Learning (RL) approaches have been
proposed; in [7], the authors deploy a deep learning-based
framework with the goal to minimize the weighted cost
that reflects the efficiency of the solution, the deployment,
and the rejections. A different approach is proposed in [8],
where a service-level prediction provides a robust RL-based
mechanism that can adjust to varying network conditions
and heterogeneous hardware for autonomous VNF placement.
With respect to RL-enabled self-healing, the study in [9]
utilises a deep learning scheme to solve an NP-hard problem
that is complemented with deep neural network and K-means
clustering algorithms and ultimately alleviate the problem of
cell outages, in a 5G context. A very similar deep learning
solution is proposed in [10] but for IoT environments.

What remains underexplored in the literature, however, is
the challenge of satisfying the diverse requirements coming
from the various involved actors in an Edge/Cloud interplay,
in a decentralized and autonomous way. Motivated to tackle
this, in this work we propose a mechanism where the SFC
owners independently formulate their healing strategy, while
the infrastructure providers focus at maximizing their revenue
through optimizing the SFC resource allocation during the
healing. Our contributions can be summarized as follows:

• An RL mechanism based on Stochastic Learning Au-
tomata (SLA) is introduced to reactively respond to a site
outage in an Edge-Cloud infrastructure (Sections II-III).

• We do not only emphasize on addressing the requirements
of the SFCs but also on responding to the best interests
of the infrastructure provider. Accordingly, we formulate
a Knapsack-inspired allocation mechanism to solve this
problem locally at each site (Section III).

• We propose a pipeline that successfully links the SLA and
Knapsack-based mechanisms, where the healing solution
is iteratively optimized and determined in a quasi real-
time manner. Extensive simulation results corroborate the
efficiency of our framework (Section IV).



(a) Outage (b) Result of the Self-Healing

Fig. 1: An example of the Self-Healing Process.

II. SYSTEM MODEL

We model our Edge-Cloud infrastructure, as a graph G =
(V,E), where V represents the set of datacenter sites/nodes
(Edge and Cloud) and E the set of links that interconnect
them. Each node v ∈ V is attributed with a vector of available
resources Rv = [r1v, ..., r

N
v ] ∈ R1×N . Regarding the SFCs,

we assume that a set of S SFCs is already deployed in the
infrastructure. Each SFC s ∈ S may belong to a different
vendor and consists of a number of interconnected VNFs s =
(s1, s2, ..., sj), where sj represents the jth VNF of SFC s.
Each VNF sj is deployed as a VM which is characterized by a
vector of resource demands Dsj = [d1sj , ..., d

N
sj ] ∈ R1×N , s ∈

S. We specifically consider three types of resources, i.e., N =
3, to account for the available CPU, Memory, and bandwidth
capacities of the node and the VNF resource demands.

The seamless performance of an SFC relies on the proper
functioning of all the consisting VNFs. For instance, even
when a single VNF of an SFC is being hosted in a site
that experiences an outage, the whole SFC is affected and
the traffic cannot be processed in an end-to-end fashion.
Accordingly, in this work we study the case of a single site
outage, which however may negatively affect M SFCs, with
M ⊂ S. When this happens, all the affected VNFs that belong
to the M SFCs need to be relocated other functional sites. It
should be noted, that when more than one VNFs of an SFC are
hosted on the same faulty site, they are considered as merged
and collocated processes in the same VM [11]. In this case a
single VNF relocation can be considered. Thus, for the sake
of simplicity, the terms VNF (i.e., sj) and SFC (i.e., s) healing
will be used interchangeably in the rest of the paper.

The healing solution can be described by a binary variable
ys,v , which takes the value 1 if the affected VNF of an SFC
s is relocated to node v and 0 otherwise. For the healing to
be considered successful, the new node v has to guarantee the
resource requirements of the affected VNF (i.e., Rv ≥ Ds).
Furthermore, a VNF relocation of an SFC s should not lead to
violations of the QoS relocation requirements qs. Hence, we
introduce es,v to denote the additional delay that occurs by
relocating VNF s to node v and es,v < qs should hold. This
additional delay can be expressed by the added propagation
delay or by the extra number of hops to reach the new node.
As a final remark, in this work, only the outage compensation
part the self-healing process is considered. Outage detection
and diagnosis are part of our future work.

III. ALGORITHM DESIGN

An iterative RL-based algorithm is designed, based on
Stochastic Learning Automata (SLA) [12]. At each iteration,
as a first step, the SFC owners decide where to relocate the
affected VNFs. However, since the decision of each SFC is
taken independently, the produced relocations in an iteration
may not feasible. For instance, assume that in Fig. 1, at a
specific iteration, all three VNFs that were located in the
defective node 6 select node 5 as their healing solution, which
does not have the necessary resources to accommodate them at
the same time. In this case, a second stage decision should be
made in the same iteration, regarding which of these VNFs will
be allocated there. This local resource allocation optimization
is revenue-driven and its results are fed back to the first step,
where the SFC owners get to reconsider their decisions. This
two-step procedure is iterated until convergence.

A. SLA-based Node Selection

We assume that the SFC providers serve as SLA agents
and decide autonomously on the VNF healing, with the goal to
optimize their long-term benefit [13]. This decision is affected
by i) the satisfaction of the VNF resource demands in the new
selected node and ii) the minimization of the additional delay
occurred by the relocation. To this end, the reward gained by
SFC s when healing to node v in iteration i is given by:

R(i)
s,v = A · (1− 1

1 + e−C(es,v−qs)
) +B · ys,v,∈ [0, 1], (1)

where A,B ∈ [0, 1] are empirically selected coefficients with
0 ≤ A+B ≤ 1, the fine-tuning of which guides the solution
towards a desirable state. The gain coefficient C ∈ R+ assists
in bringing the first term of the reward function close to 0 when
the additional delay exceeds the maximum QoS relocation
value (i.e., es,v > qs) and close to 1 otherwise. According
to [12], the probability for an SFC to select the same (and a
different) node in the next iteration is updated as follows:

P (i+1)
s,v = P (i)

s,v + b ·R(i)
s,v · (1− P (i)

s,v), v
(i+1) = v(i) (2)

P (i+1)
s,v = P (i)

s,v − b ·R(i)
s,v · P (i)

s,v, v
(i+1) ̸= v(i), (3)

where b ∈ (0, 1) denotes the learning rate which adjusts the
exploration/exploitation bias; higher b values accelerate con-
vergence to a healing solution, which are, however, probably
far from the optimum. Lower values of b yield solutions closer
to optimal, at the expense of longer convergence. Convergence
is achieved when a probability for each SFC s is close to 1.

B. Revenue-driven Local Resource Allocation Optimization

At the end of each iteration i, each SFC will stochastically
select a node to heal to. Thus, a subset of SFCs Fv ⊆M ⊆ S
is assigned to each node v ∈ V . For instance in Fig. 1b, the
SFCs 2 and 3 select node 2 to be healed to, thus F2 = {2, 3}.
Following, each node decides which of these SFCs can be
actually hosted and which need to find an alternative node
due to resource constraints. To make this decision, each SFC
s ∈ Fv , is associated with a revenue σs that the node will gain
by admitting the particular VNF. Hence, the local resource



Algorithm 1 MKP to SKP Reduction

Input: Ds,Rv,Oh,∀s ∈ Fv,∀h ∈ H
Output: d′s, r

′
v,∀s ∈ Fv

1: r′v ← Rv ⊘O1 ▷ (O1 → “smallest” VM flavor)
2: for h ∈ H do
3: if (Rv ⊘ Oh is 0) then wh ≫ r′v else wh ←
⌈r′v/(Rv ⊘Oh)⌉

4: for s ∈ Fv do
5: if ((d′s is unassigned) and (Ds ≤ Oh)) then
6: d′s ← wh

7: end for
8: if (d′s is unassigned) then d′s ≫ r′v
9: end for

allocation optimization problem can be formulated as a Multi-
dimensional 0-1 Knapsack problem (MKP) [14]:

max
∑

s∈Fv

σsys,v (4a)

s.t.
∑

s∈Fv

dns ys,v ≤ rnv , ∀n = 1, ..., N, (4b)

ys,v ∈ {0, 1}, ∀s ∈ Fv, (4c)

which maximizes the reward of node v by admitting as many
VNFs as possible, with the highest revenue σs, provided that
the node’s resources are not overprovisioned (Eq. 4b). It should
be noted that an MKP, as a combinatorial problem and for its
brute force search, yields a complexity of O(|Fv|·2|Fv|), which
grows exponentially and cannot be used when the number of
competing SFCs, Fv , is large enough. To remedy this problem
and to make our approach more real-time oriented, we reduce
the dimensionality of the formulation as described below.

C. Reduction of the Optimization Problem

We transform problem 4 to a Single-dimension 0-1 Knap-
sack problem (SKP), by matching the resource requirements
of the competing VNFs to H pre-specified VM “flavors”
available in each node. Each flavor h ∈ H is characterized by
the offered resources, Oh ∈ R1×N ; in our case N = 3 (CPU,
memory and bandwidth). Each flavor, depending on its size,
is associated with a single-dimension weight wh, that reflects
how many times it can fit in a node. Hence, the available
capacity Rv of a node v can be expressed as a scalar r′v .
Similarly, for an SFC, the requested set of resources Dsj

can also be represented as a scalar d′s. Algorithm 1 describes
the steps of the dimension reduction. We note that a ⊘ b
calculates the smallest element of the Hadamard (or element-
wise) integer division between the two vectors. Furthermore,
the inequality a ≤ b denotes a logical operator which takes
the value of 1 when all the elements of a matrix a are less
than or equal to the corresponding elements of a matrix b.
Lastly, the operation ⌈a⌉ is the ceiling operator for a scalar.
We also assume that the advertised flavors Oh are sorted from
the smallest to the largest and that the reduced capacity of
the node becomes equal to the amount of the smallest flavor
instances that can fit the node at the same time (line 1).
Additionally, that each flavor’s reduced weight is a number
inversely proportional to the number of the VM instances of

this flavor that can fit the node at the same time (lines 3-4). In
lines 5-9, the smallest VM flavor Oh that can accommodate
the requirements Ds of SFC s is selected and its weight
wh becomes the SFC’s reduced weight d′s. According to this
transformation, the reduced SKP problem becomes:

max
∑

s∈Fv

σsys,v (5a)

s.t.
∑

s∈Fv

d′sys,v ≤ r′v, (5b)

ys,v ∈ {0, 1}, ∀s ∈ Fv. (5c)

The emerging SKP problem can be solved in pseudo-
polynomial time with a O(|Fv|·r′v) complexity when using the
Bellman recursion [15]. Furthermore, the complexity of Algo-
rithm 1 is equal to O(|Fv| ·H). Hence, the overall complexity
of the resource allocation problem is O(|Fv| · (H + r′v)).

IV. NUMERICAL RESULTS

We consider a hybrid infrastructure that consists of V Edge
and Cloud sites, with the Cloud sites being more powerful,
but found in much longer distance than the Edge ones. For the
resources we use a three-dimensional vector of CPU, memory
and bandwidth capacity, [cores,GB,Gbps]. We model the
Edge capacity vector to range between [2, 4, 1] and [24, 48, 10],
and the Cloud one from [24, 48, 10] to [96, 192, 40]. The
resources of the 3 available VM flavors are set as [2, 4, 0.5],
[4, 8, 1] and [8, 16, 2] respectively. We assume that the SFCs
have various lengths, resource and QoS demands and they are
already provisioned in the infrastructure prior to the outage.
The resource requirements of each VNF lie in the range of
[1, 2, 0.5] and [8, 16, 2]. The number of SFCs and infrastructure
nodes remain static throughout the simulation, while a single
random node is considered to fail at each time. Our approach,
however, could be easily modified to account for more outages
in parallel. Finally, the learning rate is set as b = 0.6.

As a first experiment, the performance of the SKP reduction
is evaluated. Fig. 2a illustrates the average revenue gained by
a single site, when an incremental number of SFCs compete
for its resources. Revenue σs acquired for each healed SFC s
ranges between 1-10 and is proportional to the SFC resource
demands. This value can be set according to the provider’s
revenue policy. SKP is compared with a Brute Force Opti-
mization (“BFO”) implementation, where the optimal solution
is selected after evaluating all the possible healing placements.
This results in the optimal revenue, though it is unrealistic, as
its execution time scales exponentially with |Fv| (e.g., > 10s
when |Fv| = 20). We also implement a greedy solution which
prioritizes SFCs with low resource requirements, in an effort
to maximize the number of allocations. For this comparison,
100 experiment repetitions were executed with fluctuating |Fv|
and SFC requirements and the results were averaged. Our
algorithm is shown to outperform the greedy solution when the
problem is no longer trivial, i.e., when not all the competing
SFCs can fit the node at the same time. The difference between
the collected and the optimal revenue is never greater than
10%, while the execution time is always close to that of the
greedy algorithm (< 1ms), which acts as the baseline.



Fig. 2: Performance evaluation: (a) mean node revenue, (b) mean SFC reward and (c) healing ratio and (d) learning rate impact.

Fig. 3: Benchmarking of SFC (a) healing ratio and (b) reward.

Then, the efficiency of the proposed self-healing iterative
optimisation is presented. A Monte Carlo simulation is con-
ducted for different infrastructure and SFC settings. The results
are averaged over 100 executions and presented in Fig. 2b,
which illustrates the convergence performance of the SLA
algorithm, for a 15-node infrastructure. For the first iteration,
the healing node selection is random, as the probabilities P 1

s,v

are equal, ∀s ∈ S, ∀v ∈ V . As seen, our algorithm rapidly
learns which new placements optimize the SFC reward, in
less than 45 iterations. Nonetheless, the higher the number of
the SFCs that try to heal, the lower the mean reward. This can
be reasoned by the fact that it becomes increasingly difficult
to find a healing solution that both minimizes the additional
delay and satisfies the resource requirements for all the SFCs.

Fig. 2c presents the successful healing ratio results, which
are acquired for 20 SFCs and an infrastructure size that
increases from 20 to 50 sites. Once more, our algorithm learns
the most suitable solution for each SFC rather quickly, while
achieving a high successful healing ratio, especially for larger
sizes of the infrastructure. For all the different infrastructure
configurations, the healing ratio initiates from a percentage of
around 30-35% and peaks close to 90%, when enough possible
solutions become available (i.e., |V | ≥ 40). For smaller sizes,
it is normal to see lower healing ratios since there are not
enough resources to accommodate the affected SFCs.

Additionally, the SLA efficiency is evaluated in terms of
execution time, as demonstrated in Fig. 2d. For these experi-
ments, we have set the number of SFCs to 20 and the size of
the infrastructure to 35, while we increased the learning rate

from 0.1 to 1. As we can see, as the learning rate increases, the
exploration of the solution space becomes less exhaustive and
the algorithm converges to a solution much faster. This has a
negative effect on the mean reward achieved, which depicts
the efficiency of the successful healing strategy. Nonetheless,
for a learning rate of around 0.6 a very good trade-off is found,
with an execution time of less than 1s, which enables the SLA
algorithm to find a very efficient healing solution in real-time.

Lastly, we provide a benchmark comparison against three
baseline approaches, namely “Random”, “Distance”, and “Ca-
pacity”; for the first one, a random node is selected as the
healing solution; in the second, the SFCs try to heal to the
closest neighboring nodes from the defective one, while in the
third, the healing solution is guided towards the nodes with the
most available resources. The results presented in Fig. 3a are
averaged over 100 executions for a configuration with 20 SFCs
and 35 nodes. The proposed algorithm increases by more than
double the successful healing ratio with respect to the baseline
solutions. An interesting observation is that “Capacity” does
not provide acceptable relocations, since it can only satisfy
the resource but not necessarily the QoS requirements. This
corroborates the fact that the SLA algorithm can find a very
good trade-off between satisfying the SFCs’ resource and QoS
demands. This behavior is also validated in Fig. 3b, where the
individual (vertical) and average (horizontal) rewards are given
for every SFC and algorithm.

V. CONCLUSION

In this paper we studied the problem of SFC self-healing,
when a datacenter site hosting multiple VNFs of various SFC
fails, in an Edge-Cloud environment. A distributed RL algo-
rithm based on Stochastic Learning Automata was introduced,
which allows the SFC providers to autonomously select a
possible healing solution based on a stochastic process that
iteratively converges to a final solution. This algorithm was
enhanced with a resource allocation optimization formulation
that considers the available resources of the datacenters and
maximizes their revenue from the healing process. The ex-
perimentation showed that the proposed algorithm maximizes
the attained revenue for the infrastructure provider and the
successful healing ratio for the SFC providers, in real time.
Our future work will lie on failure diagnosis and detection, in
order to introduce a complete, robust self-healing mechanism.
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