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Abstract—Recent trends in Network Function Virtualization
(NFV) combined with Internet of Things (IoT) and 5G applica-
tions have reshaped the network service offering. In particular,
Service Function Chains (SFCs) can associate network functions
with physical and virtual resources towards providing a complete
network service. Concurrently, the management of a continuously
expanding network and the fulfillment of the applications’
requirements pave the way for autonomic network solutions.
Intent Based Networking (IBN) is a novel paradigm that aims to
achieve the automatic orchestration of network services and the
assurance of their performance. Accordingly, in this paper, we
propose a novel automated network assurance model, based on
Model Predictive Control, to guarantee the Quality of Service
(QoS) and security requirements of multi-tenant and IBN-
enabled SFCs. In this context, corrective decisions are proactively
taken, in the form of incoming intent relocations among the SFCs.
The results reveal that our model can assure with high probability
the application requirements and minimize QoS violations.

Index Terms—Intent Based Networking, Service Function
Chaining, NFV, Model Predictive Control

I. INTRODUCTION

As the network infrastructure grows and new applications
emerge, it becomes strenuous to manage the network. At the
same time, new applications with strict Quality of Service
(QoS) requirements necessitate a stable communication with
performance guarantees. Therefore, the network should be able
to adjust to any performance drift that may result to any
requirements violations. In this Network Assurance problem
[1], the performance degradation must be promptly detected
and appropriate network actuators should be triggered.

Obviously, reforming the network is not an effortless task.
On top of that, error prone manual configurations are no longer
a viable option for large networks. Thus, new autonomic
management approaches need to be deployed to automate this
network assurance. Intent Based Networking (IBN) is such
an approach that envisions creating a self-sustained network.

Work supported in part by the Cisco University Research Program Fund of
Silicon Valley Community Foundation 2021-234759 (3696), and CHIST-ERA
CHIST-ERA-18-SDCDN-003 / EPSRC EP/T021942/1 (DRUID-NET).

IBN gives the opportunity to the users to express their high-
level requirements in a declarative way, called intent [2]. A
simple example can be “User A wants to talk to User B
through a video conference application with high QoS and
default security”. Following, this intent can be translated into
specific network configurations and installed in the network
fabric. Finally, the deployed intent is monitored in order to
detect any deviations from the initial requirements.

This process creates a Closed-Loop Automation (CLA)
system that relies on the intent translation, activation and
assurance processes [3]. Often, the intent is translated into a
Service Function Chain (SFC) that is composed of a number
of Virtualized Network Functions (VNFs) [4]. The translated
intent can be later activated by using an appropriate VNF
placement solution that allocates the SFC to the underly-
ing physical infrastructure [5]. The allocation can take into
consideration the requirements of the user by appropriately
constructing its objective function. For instance, when the
intent requests a high QoS, the objective function could be
formulated as to maximize the throughput or minimize the
delay of the communication.

However, this will only guarantee that the QoS will be
satisfied upon the activation of the intent. In contrast, the
network or the intent itself can dynamically change through-
out its lifetime leading to performance uncertainty. To this
purpose, in this paper, we propose a new network assurance
model in the form of a discrete time dynamical system, where
the QoS, specifically end-to-end delays, are captured explicitly
as time varying states. Subsequently, using tools from Model
Predictive Control (MPC) [6] and optimization, we are able
to formulate the problem of satisfying the user intents (user
intents and users will be used interchangeably) at all times, as
a finite optimization problem which we solve in real time.
In more detail, we translate the intent into an SFC with
specific security and QoS requirements that may be requested
by multiple users at the same time, following a multi-tenant
model. The number of users associated with an SFC can affect
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its overall performance, triggering automatically corrective ac-
tions. These actions lead to different assignments of incoming
user flows between different SFC instances, in order to satisfy
a lower performance bound, while minimizing any QoS and
security violations.

The remainder of the paper is structured as follows. Section
II highlights the related work. Section III presents the system
model and the main components of the network assurance
controller. The results and efficiency of our framework are
demonstrated in Section IV. Finally, Section V concludes our
work and provides some possible future directions.

II. RELATED WORK

In IBN, network assurance can be performed through either
reactive or proactive actions. Regarding reactive assurance
the most common approaches include flow migration, Virtual
Machine (VM) migration, or resource scaling. For instance, the
authors in [7], through a Software Defined Networking (SDN)
controller periodically monitor the delay in a network path.
When a low quality is noticed, the controller selects a different
path that can satisfy the intent’s QoS. Another approach [8],
concerns the use of a k-shortest path algorithm. In particular, a
path is selected among k alternatives and if any security (i.e.,
blocked hosts or links) or QoS conflicts arise with respect to
the intent, then a different path is selected.

In the above works, the emphasis is placed on a simple
point-to-point connectivity scenario. However, an intent may
refer to an SFC. In this case, the monitoring can be shifted
at the computational resource consumption of the VM. For
example, the authors in [9] periodically poll the status of a
VNF (e.g., CPU utilization) and when an overprovisioning
event is noticed, the VM migration process is triggered. Al-
ternatively, the whole SFC can be migrated, if the service does
not respect the high-level expressed QoS, as in [4]. Another
possible choice is to simply scale up the allocated resources
to the VMs that host the VNFs of an SFC as proposed in [10].

With reference to proactive IBN assurance, the pertinent
literature is mostly divided into flow and VM migration. For
instance, the authors in [11] propose a Reinforcement Learning
(RL) technique that learns the capacity of a link based on
current and predicted traffic sizes. If the traffic and the capacity
show opposite trends, then corrective actions can be initiated.
Alternatively, taking advantage of the quasi-periodicity of
network traffic, the authors in [12] propose the use of historical
data to train a routing algorithm to make re-routing decisions
for the following time periods. Historical flow data can also
be used to predict future Service-Level Agreement (SLA)
violations that will result into a set of corrective actions, such
as re-routing and flow migration, as in [13].

In the case of resource scaling, the authors in [14] propose
the use of a Multilayer Perceptron Neural Network to predict
the CPU utilization of a VM hosting a VNF and to trigger
a scale up if the predicted utilisation exceeds the acceptable
thresholds. Other Neural Networks such as Long Short-Term
Memory (LSTM) models can also be used to predict the re-
source utilization of the VMs for the resource scaling purposes

such as in [15]. Except scaling the VM resources, it could also
be beneficial to scale the bandwidth resources of virtual links.
Accordingly, the authors in [16] leverage historical logs of
packet loss and delay and propose the use of an RL technique
to scale up the allocated bandwidth.

In this work, our goal is to deal with the challenges posed
by the dynamic nature of the IBN driven QoS satisfaction,
by proposing, for the first time, an MPC-based framework
for proactive, automated network assurance. Specifically, we
first utilize an identification method based on constrained least
squares, to obtain a linear approximation of the dynamic
operation of the SFCs and their interconnections (i.e., relo-
cations of incoming user flows). Having such explicit models
that associate user flows with QoS, we are able to formulate
the problem of guaranteeing SLA satisfaction as a decision
problem. The adopted MPC formalism can handle all the types
of constraints that are implicitly or explicitly imposed from
the system and its requirements. These include the constraints
posed by the QoS and security intents, the finite resources
of the SFCs, the discrete nature of the scheduling/relocation
problem, and the time-varying uncertainty in the arrival of the
incoming user flows; in our formulation, the latter leads to the
control inputs (i.e., the variables deciding the flow relocations)
depending on time-varying exogenous signals.

III. CONTROL-BASED PROACTIVE IBN ASSURANCE

A. System Model

We consider S levels of security and D levels of QoS
intents respectively, which lead to S ×D = N different SFC
placements. Each SFC is unique in terms of QoS and security
level combination. An index variable i ∈ [1, ..., N ] is used to
label the SFCs and the level of offered QoS and security of
each one of them is calculated by di = (i − 1) mod D + 1
and si = (i− 1) div S + 1 respectively; mod is the modulo
operator and div is the integer division. Towards achieving
proactive IBN-assurance, we follow the work in [17] where
time is considered slotted. At the beginning of each slot t, we
accommodate the partial relocation of incoming user flows
among the SFCs. It should be noted that relocation refers to
a different assignment of an incoming user from their desired
SFC to a different one, since the allocation of the particular
user to the requested SFC would negatively affect the existing
users that are being already served. Accordingly, for the
rest of the paper we will use the terms different assignment
and relocation interchangeably. To avoid SLA violations, user
relocations are permitted only from an SFC with a lower
level of security to an SFC with higher ones. We model the
operation of each SFC i as a discrete Linear Time-Invariant
(LTI) system with exogenous inputs of the form

xi(t+ 1) = aixi(t) + biu(t) + ci(vi(t)− qi(t)). (1)

In Eq. (1), xi(t), i ∈ [1, ..., N ] is the experienced end-
to-end delay, which reflects the achieved QoS and u(t) =
[u1,2(t), u1,3(t), ..., u1,N (t), u2,3(t), ..., uN−1,N (t)]⊺ ∈ ZL×1

is the input vector consisting of the permitted relocations of
the incoming, newly associated users among the SFCs, at time
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t. Specifically ui,j(t) ∈ u(t) is a non-negative integer that
signifies the number of relocated incoming users from SFC i
to SFC j, where i < j, i, j ∈ [1, ..., N ]. The latter condition
defines the permitted relocations, as well as the size L of u(t)
which can be calculated using the arithmetic progression as
L = N(N−1)

2 . The exogenous signals vi(t) ∈ [0, V max] and
qi(t) ∈ [0, Qmax

i (t)] are unknown, however bounded signals
accounting for the total number of incoming and outgoing
users respectively. V max denotes the maximum number of
users that can be accommodated at the same time in the
infrastructure. Also, Qmax

i (t) =
∑t−1

t′=0 vi(t
′) is the number

of users that stop using an SFC at time t and it cannot exceed
the sum of the users that were associated with it until t− 1.

The parameters ai, ci ≥ 0 are scalars, while bi =
[bi1,2, b

i
1,3, ..., b

i
1,N , bi2,3, ..., b

i
N−1,N ] ∈ R1×L is a row vector,

i ∈ [1, ..., N ]. To estimate these parameters, we employ the
Least Squares with Linear Constraints and Bounds (LSLCB)
algorithm [18], once and offline, on data acquired by the
SFCs’ operation. This algorithm is preferred because it allows
to define additional requirements and constraints that derive
from the physical meanings of the unknowns, i.e., ai, bi, ci;
in our case, the end-to-end delay experienced in an SFC
should remain unchanged if no relocations occur and there is
no incoming and outgoing users, i.e., ai = 1. Additionally,
relocations of users from SFC i to j, should decrease the
delay experienced in i and increase the delay in j. Relocations
that happen among SFCs other than SFC i, do not have an
impact on its delay. Hence, bii,j ≤ 0, bji,j ≥ 0, and bii′,j = 0
otherwise. Finally, the incoming user flow increases the delay
and the outgoing workflow decreases it, meaning that ci ≥ 0.
Summarizing, after collecting time-series measurements of
length T , for xi, u, vi and qi, by relocating user flows and
observing the SFC i’s operation, we define the following
auxiliary constants (Ψ,Ω) and variable (Θ):

Ψ = [xi(1) ... xi(T )]
⊺,

Ω =


xi(0) ... xi(T − 1)
u1,2(0) ... u1,2(T − 1)

...
uN−1,N (0) ... uN−1,N (T − 1)
vi(0)− qi(0) ... vi(T − 1)− qi(T − 1)


⊺

,

Θ = [ai bi1,2 ... biN−1,N ci]
⊺.

Then, the parameter ai, bi and ci estimation problem for SFC
i can be defined as follows:

min
Θ

||Ψ− Ω ·Θ||22 (2a)

s.t. ai = 1, (2b)

bii,j ≤ 0, ∀bii,j ∈ bi, i ≤ j, (2c)

bij,i ≥ 0, ∀bij,i ∈ bi, i ≥ j, (2d)

bii′,j = 0, ∀bii′,j ∈ bi, i ̸= i′, i′ ≤ j, (2e)

ci ≥ 0. (2f)

Furthermore, (1) constitutes a positive system, since xi corre-
sponds to positive delay times. For example, we examine the

simple case where no relocations take place. Then, at time t,∑t
t′=0 qi(t

′) ≤
∑t−1

t′=0 vi(t
′) and we get:

xi(t+ 1) = xi(t) + civi(t)− ciqi(t) =

= xi(t− 1) + civi(t− 1)− ciqi(t− 1)

+ civi(t)− ciqi(t) =

= xi(0) + civi(t) + ci(
∑t−1

t′=0
vi(t

′)−
∑t

t′=0
qi(t

′)),

which for xi(0) = 0 and based on constraint (2f) gives
that xi(t + 1) ≥ 0. The state variable x is also inherently
constrained due to the SFC’s capabilities, while the sum of the
input variables ui,j is physically constrained by the incoming
flow of users vi of SFC i. Specifically, for all t ≥ 0,

X := {xi : 0 ≤ xi(t) ≤ Xmax
i , i ∈ [1, ..., N ]}, (3)

U := {u : 0 ≤
∑N

j=1
ui,j(t) ≤ vi(t), i ∈ [1, ..., N ]}. (4)

Based on the above, one can consider the N scalar systems
of the form (1) as a large interconnected system, where
the coupling is present via the common input constraints,
in turn depending on the signals vi(t) (4). This formulation
paves the way for the MPC algorithm to jointly perform
the tasks of user relocations and admission control for each
SFC, while respecting the SLA constraints, under varying
incoming and outgoing user flows. Relocating user flows
introduces operational overhead to the infrastructure, so we
aim at minimizing the number of relocations at the same time.
Our goal is summarized as follows: Consider a system with
N state variables of the form (1), subject to constraints (3),
(4). Given a desired maximum end-to-end delay for each SFC,
XSLA

i ∈ X, compute an admissible control strategy, u ∈ U, so
that the constraints are satisfied at all times and the additional
labour is minimized.

B. Placement Algorithms

In this work, we follow the placement methodology of [4].
In particular, a hybrid placement solution is followed that
accounts for the different and high-level QoS requirements
of an intent, which can be “High” (d = 3), “Medium” (d = 2)
or “Low” (d = 1). For instance, when a user indicates that
a “High QoS” is needed, an optimal placement algorithm is
executed [19]. For “Medium QoS” a sub-optimal but efficient
placement is performed through an iterative refinement local
search (IRLS) [4]. Finally, for “Low QoS”, a random and
under best effort placement algorithm is executed that places
the VNFs of an SFC in a random server that can however
guarantee the computational requirements and the communica-
tion demands of the SFC. This hybrid approach can configure
the network according to the intent and actually deliver an
SFC that complies with what was requested in the intent.
Regarding the security, three levels are considered, similar to
QoS, namely “High” (s = 3), “Medium” (s = 2), and “Low”
(s = 1). These levels will have an impact on the structure
and length of the SFC. For example, for a “Low Security” a
two-VNF SFC is considered that offers basic security features
(i.e., a virtual router followed by a firewall). When the user
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requests a “Medium Security” a Deep Packet Inspection (DPI)
function is added to the SFC. Finally, for a “High Security”
the SFC length becomes 5 by adding an Intrusion Detection
System (IDS) and an IP encryption function (IPSec).

Furthermore, our approach follows a multi-tenant strategy
to maximize the benefits of NFV and reduce the overall cost
of deployment. Accordingly, two users that express the same
intent in terms of QoS and security level, will be serviced by
the same SFC. This generates significant cost reductions, since
a lower number of SFCs will be instantiated. However, this
creates a new challenge of stressing the capabilities of the SFC
that may result in a performance drift, since the queuing delay
will exponentially increase with the load/number of intents
waiting to be processed by a VNF [20].

Hence, when an SFC cannot receive any more intents of its
type, the particular intent should be allocated to another SFC.
We need to emphasize that the re-allocation of an intent to
another SFC should not be perceived as a flow migration or
actual flow relocation that could result in additional delays
but a control decision of where a user’s intent should be
allocated from the beginning. Additionally, if an intent cannot
be allocated to the requested SFC, the alternative SFC should
still satisfy the requirements of the intent. For example, a
“Medium QoS” intent should be placed to an SFC that offers
higher than medium QoS (i.e., “High”). The same applies for
the Security level.

C. Intent Relocation and Admission Control using Model
Predictive Control (MPC)

In this section, we discuss how our approach tackles the
problem defined in Section III-A. Specifically, two optimiza-
tion problems are formulated, the solution of which retrieves
the user relocation control strategy and the admission control
strategy. The first one has a recurring nature, while the second
one is invoked only when user relocations alone are not enough
to guarantee SLA satisfaction and service has to be denied for
certain users. To solve these optimization problems and deal
with the identified constraints, we employ the MPC scheme
twice; each time, it solves a linear optimization problem,
which is based on the system model provided in the previous
subsections, over a predefined time horizon. In particular,
regarding the user relocation optimization, i.e., the first MPC
invocation, at each control time slot t, the system behavior,
xi(t), is observed and information, ṽi(t), q̃i(t), is collected
and used to update the dynamic model of the system, Eq. (1),
for each SFC i. The variables ṽi(t), q̃i(t) are predicted values
of vi(t), qi(t) respectively, the estimation of which is given
in detail in the following subsection. Then, to accommodate
the proactive nature of our solution, an optimization problem
is solved over a prediction horizon of K time slots and the
resulting control actions of the first time slot are applied to
the system in a closed-loop control fashion, according to the
receding horizon control principle [6]. An overview of this
operation is depicted in Fig. 1.

Assuming that the act of relocating a user introduces
additional labour for the infrastructure, we aim at achieving

Fig. 1: MPC Framework Overview: Hierarchy of User Relo-
cations formed by the assumed priorities.

the desirable SLA satisfaction while keeping the number of
relocations in the control horizon to a minimum. Thus, the
proactive user relocation optimization problem solved at each
time slot t is formulated as:

min
u(k)

∑t+K

k=t+1

δ√
k − t

· u(k) (5a)

s.t. ui,j(k) ≥ 0, ∀ui,j(k) ∈ u(k), (5b)

0 ≤
∑

i,j∈[1,...,N ]
ui,j(k) ≤ ṽi(k), ui,j(k) ∈ u(k),

(5c)

xi(k) ≤ XSLA
i , ∀i ∈ [1, ..., N ], (5d)

xi(k + 1) = xi(k) + biu(k) (5e)
+ ci(ṽi(k)− q̃i(k)), ∀i ∈ [1, ..., N ],

where XSLA
i is the desired maximum end-to-end delay and the

coefficient δ = [δ1,2, δ1,3, ..., δ1,N , δ2,3, ..., δN−1,N ] ∈ R1×L
+

is a constant row vector which dictates the priority in which
the user relocations take place, by assigning lighter or heavier
weights to the corresponding control inputs. These priorities
in our case reflect i) the preference to relocate the users to
SFCs offering the same level of QoS with a higher level of
security and, if that is infeasible, then to ii) relocate the users
to the SFC offering the closest higher QoS level. Hence, the
elements of δ are calculated as follows:

δi,j =

{
w1(dj − di) + w2(sj − si), if dj − di ≥ 0

≫ 1, otherwise,

where w1 ≥ w2, w1, w2 ∈ R are empirically selected constants
that produce δi,j ≤ 1. Relocations to SFCs with lower levels
of QoS are discouraged, thus a very large weight δi,j ≫ 1
is assigned to the respective inputs. We also remind that
relocations to SFCs with lower levels of security are prohibited
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by design. Finally, relocations are discounted towards the end
of the horizon where the prediction accuracy is lower.

When the first MPC fails to produce a solution, relocating
the users alone is not sufficient to guarantee SLA satisfaction,
thus the need for admission control arises. That is only when
the second MPC invocation takes place; for this, we increment
u(t) with N new control variables, ui,0, i ∈ [1, ..., N ], that
correspond to the number of rejected users in each SFC. In
this way, we define a new input vector

u′(t) = [u1,0(t), u1,2(t), ..., u2,0(t), u2,3(t), ...,

uN−1,N (t), uN,0(t)]
⊺ ∈ Z(L+N)×1. (6)

Consequently, a new row vector b′i ∈ R1×(L+N) is calculated
offline for each SFC by using the LSLCB algorithm, alongside
a new incremented δ′ ∈ R1×(L+N)

+ , where δ′i,0 ≫ δ′i,j , ∀i, j ∈
[1, ..., N ]. This condition ensures that rejecting users is not pri-
oritized over relocating them. Then, the optimization problem
(5) is solved with the new variables and coefficients in place
and a control law consisting of both relocations and rejections
of users is calculated. This double MPC solving procedure is
guaranteed to provide a solution and is iterated for as long as
the automatic control scheme is active.

D. User Flow Estimation

For each SFC i, the incoming number of users is estimated
with the use of a Holt linear exponential smoothing filter [21]
which captures the linear trend of time series. For any time
interval t, the one-step prediction ṽi(t) of the incoming user
flow vi(t) is:

ṽi(t) = v̂i(t) + γ(t),

v̂i(t) = αvi(t) + (1− α)(v̂i(t− 1) + γ(t− 1)),

γ(t) = β(v̂i(t)− v̂i(t− 1)) + (1− β)γ(t− 1),

(7)

where α and β are smoothing constants, v̂i(t) is the smoothed
value and γ(t) denotes the linear trend in the measurements.
As the initial values, a random v̂i(0) is used, within the range
of the incoming number of users and γ(0) = 0.5. Estimations
for the outgoing number of users q̃i(t) are calculated in a
similar way. To get predictions for a horizon deeper than one
step, the prediction of the previous step is fed back as the real
value, which naturally results in a decreasing accuracy.

Despite its popularity, this predictor tends to overestimate
the real values [22], thus the control law calculated in problem
(5) might not satisfy the input constraint (4) during the
execution time. In this case, a control law u′′(t) is applied,
which is calculated by arbitrarily decreasing input values ui,j

in a round-robin fashion, until the constraint (4) is eventually
satisfied. This results to an end-to-end delay x′′

i (t) ≤ xi(t) ≤
XSLA

i ,∀i ∈ [1, ..., N ], as the linear system (1) is monotone to
the incoming number of users. On the other hand, when the
real flows are underestimated, SLA violations might occur.

IV. PERFORMANCE EVALUATION

For the evaluation, a data center represented as a k=6 fat
tree topology is considered. The propagation delay is set as

1ms, 3ms, and 5ms for the edge, aggregation and core links
respectively [23]. Additionally, an M/M/1 queuing delay model
is followed as it can efficiently model the server queues [24].
The processing delay is a function of the VNF types used to
form the SFCs and ranges from 100µsec to 400µsec [25].

Regarding the SFCs, a total of N = 9 services are
considered that represent the different QoS (D = 3) and
Security (S = 3) combinations presented in Section III. The
bandwidth requirements of the SFC are set to 10 Mbps for
“Low QoS” (di = 1), 30 Mbps for “Medium” (di = 2), and
50 Mbps for “High” (di = 3). For the modeling and parameter
estimation part, the MATLAB lsqlin solver was used on a time-
series dataset of T = 2500 samples. Each control time slot t
spans for 10min. The incoming intents vi are issued according
to a Poisson distribution with a rate of 4 intents per time slot,
and their lifetime follows an exponential distribution with a
range of 1− 24 time slots. The experiments last for a period
of 35 time slots and the prediction horizon for the MPC solver
is K = 6 time slots, unless stated otherwise.

As a first experiment, the performance of the MPC algo-
rithm is evaluated Accordingly, Fig. 2a depicts the overall
behavior of our system, which guarantees the SLA satisfaction
of the SFCs, despite the fluctuating incoming user flows. For
a better understanding, we zoom into the exact operation of
three representative SFC placements, i.e. SFC3 (Fig. 3a), SFC6

(Fig. 3b) and SFC9 (Fig. 3c). The system is assumed to have
zero initial conditions, so its behaviour depends uniquely on
the inputs. Here, we observe that when the experienced delay
is close to the SLA maximum values (dotted line in Fig. 2a),
incoming users start to be proactively switched from SFC3

and SFC6. Specifically, this response of our system begins at
t = 17 for SFC3 and at t = 11 for SFC6, when the SLA
value is reached for the first time and, from that point on, the
incoming user flows are regulated with relocations, to keep the
delay at an acceptable level. When the delay starts decreasing,
the relocations are limited as well (e.g., t = 23, 24, 28, 32 for
SFC6). In the odd case of SFC9, which by design and due to
SLA constraints is unable to relocate any users, the invocation
of the second MPC (admission control) results in incoming
user rejections when the delay is close to the SLA value.

Exploring even further the behavior of our system, we
concentrate on the user relocations that happen to and from
SFC6. In the breakdown depicted in Fig. 2b, we observe that
when the SFC struggles, more users are relocated from it than
to it (e.g., t = 20, 22, 27). On the other hand, when the delay
decreases, it mostly receives users (e.g., t = 23, 24, 32, 33);
in detail, SFC6 is one of the relocation targets of SFC3 and
SFC4, which proactively start relocating user flows to it when
their end-to-end delay is close to the SLA value. We notice
that the relocation priorities are respected as well.

Fig. 2c presents the effect of the MPC’s prediction horizon
K to its performance and execution time. The algorithm was
implemented using the YALMIP toolbox [26]. As the proposed
solution avoids any SLA violations, as shown in the analysis
so far, we assume that only when denying an intent an SLA
violation occurs. The average execution time is calculated per
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Fig. 2: MPC performance analysis: (a) SLA satisfaction, (b) Relocations breakdown (SFC6), (c) Horizon length impact on
execution time and service denials, (c) Benchmarking.

(a) Users Relocated from SFC3

(b) Users Relocated from SFC6

(c) Users Rejected at SFC9

Fig. 3: System’s response to fluctuating incoming user flows.

time slot and includes the invocation of the first and potentially
the second MPC algorithm, depending on whether admission
control is required in a slot. Apparently, as the length of the
horizon K increases, the algorithm manages to calculate better
proactive control strategies that result in less service denials
(8% less in total, when moving from K = 1 to K = 6, for
1450 users). However, the performance remained the same for
K > 6, indicating this is the sweet spot for our configuration.
Naturally, increasing K results in increasing real execution
times (up to 6 sec), however these are still negligible when
compared to the length of the control slot t which spans
minutes.

In the last part of the evaluation, we perform a comparison
of the proposed algorithm, with three baseline solutions: i) a
no-action one where no reallocations nor rejections of users
take place, ii) one where a random percentage of incoming
users are relocated from the SFCs that measure SLA viola-
tions, to other random ones and iii) a greedy solution, where
the whole incoming user flow of struggling SFCs is relocated

to the most underloaded ones, at each time slot t. To make
a fair comparison, the same relocation priority constraints
that were defined in Section III were implemented for all the
algorithms, that is why service denials are still reported from
SFCs that are not allowed to relocate their users (i.e., SFC9).

Fig. 2d depicts the number of SLA violations of all algo-
rithms per time slot. For the MPC, as in the previous analysis,
the violations are a result of service denials; for the others, a
summation of the rejected users and users experiencing end-
to-end delays greater than their SLAs is made. The results
showcase the dominance of the proposed solution, as not only
the number of new SLA violations per slot are kept to a mini-
mum compared to the baselines, but their trend of occurrence
is static as well. In detail, in a total of 1450 incoming users
throughout the duration of this experiment, the MPC reported
a total of 6.4% of SLA violations, while the no-action one,
the random and the greedy reported 30.3%, 24.9% and 17.1%
respectively. This happens due to the increased ability of the
MPC to deal with the anticipated workload and, based on the
feedback from the SLA satisfaction, to proactively relocate
users from overloaded SFCs to underloaded ones.

V. CONCLUSION

In this paper, we studied the problem of providing SLA
guarantees for network assurance in IBN-enabled networks. A
Model Predictive Control-based algorithm was introduced to
proactively and optimally assign the incoming intents among
the available SFCs. This was achieved by first modeling the
operation of the said SFCs as LTI systems, offline, and then
formulating the control problem of scheduling the relocations,
as a mathematical programming problem. This problem is
optimally solved in a receding horizon manner with the help
of integrated predictors for the incoming and outgoing user
flows. The experimentation results showed that the proposed
algorithm can maximize the SLA satisfaction by successfully
responding to the fluctuating workload of the system. Our
future work lies on exploring the alternatives for dealing with
extreme prediction inaccuracies of our system and incorporate
them to the formal definition of the problem solved.
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