
Service Function Chaining in LEO Satellite
Networks via Multi-Agent Reinforcement Learning

Khai Doan∗, Marios Avgeris∗, Aris Leivadeas†, Ioannis Lambadaris∗, Wonjae Shin‡
∗Carleton University, Department of Systems and Computer Engineering, Ottawa, ON, Canada.

†École de Technologie Supérieure, Department of Software and IT Engineering, Montreal, QC, Canada.
‡Ajou University, Department of Electrical and Computer Engineering, Suwon, South Korea.

Email: {khaidoan@sce, mariosavgeris@cunet, ioannis@sce}.carleton.ca, aris.leivadeas@etsmtl.ca, wjshin@ajou.ac.kr

Abstract—In addition to offering enhanced global
connectivity, low-earth-orbit satellite networks (LSNs)
can be a potential solution for a large range of ap-
plications such as disaster response, environmental
monitoring, and military operations, among others. In
our context, each specific application is represented
by a service function chain (SFC) in which each func-
tion is considered as a task in the application. Our
objective is to optimize the long-term system perfor-
mance by minimizing the average end-to-end delay
of SFC deployments in LSNs. To achieve this, we
formulate a dynamic programming (DP) problem to
derive an optimal placement policy. To overcome the
computational intractability, the need for statistical
knowledge of SFC requests, and centralized decision-
making challenges, we present a multi-agent Q-learning
approach where satellites act as independent agents. To
facilitate performance convergence in non-stationary
agents’ environments, we let agents to collaborate by
sharing designated learning parameters. In addition,
agents update their Q-tables via two distinct rules
depending on selected actions. Extensive experimenta-
tion shows that our approach achieves convergence and
performance relatively close to the optimum obtained
by solving the formulated DP equation.

Index Terms—Network Function Virtualization, Ser-
vice Function Chaining, Satellite Networks, Multi-
Agent Reinforcement Learning.

I. Introduction
Satellite communication networks (SCN), or specif-

ically, low-earth-orbit satellite networks (LSNs) have
emerged as a popular solution for providing global con-
nectivity [1]. Key technologies driving this progress in-
clude Network Function Virtualization (NFV) and Service
Function Chaining (SFC) [2]. In addition, this type of
network can also provide a wide range of applications.
For example, it can be used for surveillance, tracking, and
mapping, as well as for weather forecasting and disaster
response [3], while it can support remote sensing and
earth observation. Decomposing application tasks into a
sequence of functions, also called Virtualized Network
Functions (VNFs), that resembles the SFC paradigm for
deployment in LSNs is a promising approach.

Many recent studies have focused on integrating NFV
and service function chaining concepts into LSNs. Gao et
al. [4] formulated it as an integer non-linear programming
problem and proposed a distributed heuristic that utilizes
neighboring satellite resources for SFC placement. In [5]

and [6], two game-theoretic formulations were introduced,
and a Nash equilibrium was found using potential game-
based algorithms. However, none of these works addressed
the dynamic nature of satellite communication networks.
Conversely, the following works used a time-varying sys-
tem model to address satellite SFC placement; in [7],
the authors formulated a time-slotted integer linear pro-
gramming (ILP) problem and developed two heuristic-
based algorithms which minimized energy consumption.
Jia et al. [8] explored joint SFC placement and routing
optimization through elastic resource provisioning. They
then solved the corresponding “multi-slot” ILP problem
while minimizing resource consumption. The authors in [9]
proposed an ILP formulation and a heuristic solution to
minimize end-to-end delay in the SCN. However, despite
their time-varying modeling, these works ignored long-
term performance optimization and focused only on short-
term system rewards.

This work outlines a methodology for SFC placement
in LSNs. In our context, the entire SFC represents a par-
ticular application and each function is treated as a task
within. Our study distinguishes itself from previous works
by formulating the problem as a discrete-time stochastic
control process and aiming to optimize long-term system
performance, while accounting for the dynamic nature of
the network. Our contribution is threefold:

1) We first devise a dynamic programming (DP)-based
solution towards the optimal SFC placement policy.
Although optimal, this solution is computationally
complex and requires some unrealistic assumptions.

2) We then come up with a multi-agent Q-learning
(MAQL) approach where satellites behave as inde-
pendent agents. We address the convergence chal-
lenge caused by non-stationary environments by: (i)
allowing satellites to share designated learning pa-
rameters and (ii) letting satellites update their Q-
tables via distinct rules based on the selected actions.

3) Through extensive simulation we demonstrate con-
vergence and efficiency, with a performance compa-
rable to the optimum DP solution.

The rest of this work is organized as follows: Section II
describes the system model. Section III provides the DP
formulation. Section IV presents the MAQL-base service
placement policy. Experimental results are provided in

Fig. 1: An example of two satellites’ mobility modeling,
where the presence of both in a timeslot signifies the ISL
availability: evu (1) = 1, τvu = 2, Tvu = 3.

Section V with two different parameter settings consid-
ered. A conclusion of our work is given in Section VI.

II. System Model
A. Communication Model

We consider an LSN with a set of satellites, V =
{1, . . . , V }, orbiting around the Earth. The satellites
gather data (e.g., images of Earth’s surface) and co-
operatively execute computational tasks for some desig-
nated applications (e.g., flooding and wildfire detection,
or military support and weather forecasting [3]). The
movements of satellites are periodic and we assume that
an inter-satellite link (ISL) between a pair of satellites is
available when the two satellites enter the communication
range of each other. Each satellite v is equipped with Rv

computation resource (CR), i.e., CPU and memory, and
Zv storage resource (SR) units.

Our system operates in a slotted, infinite time horizon,
where t ∈ N0 = {1, 2, . . .} denotes the timeslot indices.
We represent the availability of the ISL between v and
u, hereafter referred to as v − u, at timeslot t with a
binary parameter evu(t), where evu(t) = 1 if the link
is available and 0 otherwise. Also, we use τvu to denote
the duration of the v − u. Since the movements of the
satellites are periodic, the availability of ISLs is also
periodic. Therefore, let Tvu denote the period of the v−u,
i.e., Tvu ≥ τvu and evu (t) = evu (t + Tvu). Then, the
period T of the entire network can be defined as the
least common multiple of Tuv,∀u, v ∈ V. We assume that
initial conditions evu (1) are known for all v − u links.
This assumption and the definitions of evu (t) , τvu, and
Tvu comprise the satellite mobility modeling (Fig. 1). We
assume that data transferring between a pair of satellites
is able to complete in a single timeslot.

B. Service Function Chaining and Requests
The data collected by each satellite v is saved in its

dedicated database. The Zv units of SR mentioned earlier
are meant for storing data generated during the execution
of an application, the details of this process will be
given later. For simplicity, we assume that this storage
is separated from the resources used for the database. We
denote by H = {1, . . . , H} the index set of available SFCs.
Each SFC h represents an application and is comprised by
an ordered sequence of lh functions. Each satellite v comes
with a pre-installed set of function images for which it can

execute. Specifically, we denote by F h
f the f th function of

SFC h, and Fv = {F h
f |h ∈ H, f = 1, . . . , lh} is the set of

functions that v is capable of executing. The input to each
SFC h, i.e., to F h

1 , comes from a satellite’s database. It is
assumed that the databases of all satellites are identical
and can deliver input to F h

1 for every SFC h. The output
of F h

f becomes the input of F h
f+1, and the output of F h

lh

is the desired result.
When a satellite needs the collected data to be pro-

cessed on an SFC, it initiates a service request. We assume
that there is at most one service request in each timeslot
whose occurrence probability is denoted by µ. The satellite
that initiates the request is called the requester. Provided
that there is a service request, we let µr

v and µs
h be the

probability that satellite v will be the requester and h will
be requested SFC, respectively.

Considering an SFC h, we denote by qh
f and gh

f the
number of CR and SR units required to execute F h

f and
to store the output of F h

f , respectively. To execute F h
1 ,

a satellite will load the input data from its database to
memory and process. If a satellite executes a sequence of
l < lh consecutive functions F h

f , f = 1, . . . , l, the data
will be continuously processed in memory, hence, SR is
not consumed. If a satellite v completes F h

f and forwards
the results to u instead of deploying F h

f+1, the output
of F h

f will be moved from the memory to the storage
for transferring. Thus, gh

f units of satellite v’s SR are
occupied until the transfer completion. The following are
transferred from satellite v to u: the request (which is
assumed not to cost any resources), and the output of
F h

f . Hence, gh
f units of satellite u’s SR will be occupied

upon receiving the data, and the transfer cannot be done
if the available SR of u is less than gh

f . In the case when
none of the functions has been executed, only the request
will be transferred, and u will get the initial input from
its own database. We also define dh

fv as the running time
of F h

f at satellite v, and dh as the maximum end-to-end
delay tolerance of SFC h.

III. Dynamic Programming Formulation

In this section, we present the dynamic programming
formulation that leads to an optimal service placement
policy. In our model, the system state denoted by x is
defined at the beginning of a timeslot, followed by a
placement denoted by p, and finally by the service request.
For the logical flow, we first provide the definition of the
service placement.

1) Service placement: let p = (u, m) denote a service
placement, where u is defined as

u = {uk|uk ∈ V, k ∈ N0}, (1)

with uk being the index of the satellite that handles the
service in the kth timeslot with k = 1 is the current
timeslot. Thus, the number of elements in u, i.e., |u|, is the
end-to-end delay (in timeslots) of placement p. Intuitively,

the first element of u is the requester’s index. Next, m is
defined as

m = {mf |mf ∈ N0, f ∈ [1, . . . , lh]}, (2)

where mf is the timeslot that the F h
f is deployed with

mf = 1 being the current time slot. We also assume that
u = m = ∅ represents the blocking of requests (requests
are rejected from being served). For intuition, we provide
the following example:

Example 1: Satellite v requests SFC h comprised of
two functions, and a possible placement p is described
as follows:

• t = 1, v executes F h
1 .

• t = 2, v forwards the output to u.
• t = 3, u receives the data and executes F h

2 . 1

• t = 4, u forwards the results back to v - the requester.
This placement p spans 4 timeslots, including the current
one, and u = (v, v, u, u). The two functions are deployed
at t = 1 and t = 3, respectively, hence m = (1, 3).

We note that when a placement p is made at the
current timeslot, the required satellite resources in future
timeslots are reserved accordingly. However, the end-to-
end delay of every service placement cannot exceed a
Service-Level Agreement (SLA) value K = max

h∈H
dh, which

defines the maximum delay tolerance for all SFCs. This
suggests that satellites’ resources beyond K timeslots from
the current one have to be available.

2) System state: a system state carries information
regarding the available resources at every satellite in the
network, and the request that needs to be served. To
define the system states, let us first define the resource
availability for a satellite v ∈ V by xv = (rv, zv), where
rv = {rvk|rvk ≤ Rv,∀k ∈ [1, ..., K]} denotes the available
CR and zv = {zvk|zvk ≤ Zv,∀k ∈ [1, ..., K]} the available
SR for the K consecutive timeslots, respectively. Then,
the system state at the current time slot would be:

x = {xv, h, n|∀v ∈ V, h ∈ H, n ∈ V}, (3)

where h and n are indices of the requested SFC and the
requester satellite in the previous timeslot, respectively,
with h = n = 0 if there is no service request in the
earlier slot. Given a current placement p = (u, m),
we let x̃ = {x̃v, h̃, ñ|∀ṽ ∈ V, h̃ ∈ H, n ∈ V} be the
transitioned state in the next timeslot where x̃v = (r̃v, z̃v)
is the corresponding resource availability. x̃v is defined as
follows: let κ = 0 if m1 = 1. Otherwise, let κ be the
smallest index such that uκ ̸= uκ+1. This means that uκ+1
is the index of the first satellite that consumes either its
CR or SR according to the considered placement p. Then
(i) if v = umf

∈ u and mf ∈ m where mf ≥ κ + 1: this
implies that v executes F h

f , hence, the data are processed
at v until F h

f finishes running, i.e., v = umf +m,∀m =
0, . . . , dh

kv − 1. Then, r̃vk = rv(k+1) − qh
f , z̃vk = zv(k+1),

1In Section II, the data transferring has been assumed to span 1
timeslot. This assumption does not restrict the presented 2 methods.

k = mf , . . . , mf + dh
fv − 1. (ii) if (i) does not hold and

the following holds: v = um ∈ u and m /∈ m and
∃mf , mf+1 ∈ m such that mf < m < mf+1, this implies
that v is storing the output of F h

f . Hence, r̃v(m−1) = rvm,
z̃v(m−1) = zvm − gh

f . We note that the condition mf < m
with mf ∈ m implies m ≥ 2. (iii) if neither (i) nor
(ii) hold, i.e., v is not involved in the placement, then
r̃vk = rv(k+1), z̃vk = zv(k+1) for k = 1, . . . , K − 1.

Moreover, p cannot span K+1 timeslots. Therefore, the
Kth component of x̃v must be r̃vK = Rv, z̃vK = Zv. The
presented cases cover all the possibilities of r̃vk, z̃vk, ∀v ∈
V, k = 1, . . . , K. In addition, h̃ and ṽ are the requested
SFC and requester satellite in the current time slot. The
transition probability from x to x̃, given a placement p,
is defined as:

P
{

x→
p

x̃
}

=
{

1− µ, if no request,
µ× µr

ṽ × µs
h̃
, otherwise.

(4)

In this formulation, we define a policy as a rule that maps
each state to a placement in every timeslot.

3) Placement cost: let us now define C (x, p) as the
cost for placement p = (u, m) with respect to state x,
as follows:

C(x, p) =
{
|u|, if the request is served,
Cp ≫ 0, if the request is blocked,

(5)

where Cp is a predefined penalty cost.
4) Dynamic programming equation: to define a long-

term, time-depended cost, we assign a timeslot index t
to the state and placement definitions: x (t) and p (t).
This allows for defining the long-term discounted cost as:∑∞

t=1 γtE [C (x (t) , p (t))], where γ ∈ [0, 1] is the discount
factor. The goal of this work is to determine a placement
policy that minimizes this cost. The minimum long-term
discounted cost, denoted by J (x), can be expressed by the
following DP Equation, the solution of which provides us
with the optimal placements:

J (x) = min
p

{
C (x, p) + γP

{
x→

p
x̃

}
J (x̃)

}
. (6)

IV. Learning-Based Service Placement
Due to its recursive nature, solving the DP Eq. (6)

can be computationally intractable for large inputs. Fur-
thermore, this equation requires the statistics of service
requests, i.e., µr

v, µs
h ∀v, h, which are often unavailable.

To address these issues, we re-formulate the discussed
problem in a MAQL context where satellites act as in-
dependent agents and learn the optimal placement policy
via observations of stochastic events. In a given timeslot,
there can be multiple requests handled by a satellite v
including those forwarded from other satellites and/or
the ones initiated by v itself. Satellite v buffers those
requests and takes an action on all of them within the
given timeslot. The concept of states, actions, and costs
are defined as follows:

1) State: the available resources and buffered requests
of a satellite v are conveyed in its perceptual state which
is represented by sv = {rv, zv, yi|∀i ∈ [1, . . . , b]}, where b
is the number of requests buffered in v at the considered
timeslot; rv and zv are the available CR and SR, respec-
tively; yvi denotes the ith buffered request and is defined
as yi =

(
hi, ni, fi, t̂i

)
, in which hi ∈ H and ni ∈ V denote

the requested SFC and requester satellite, respectively;
index t̂i is the timeslot when the request is initiated and
we assume that t̂i < t̂i+1 ∀i; fi denotes the order of the
function in SFC hi that needs to be deployed next. For
example, in the current timeslot, if l < lhi

consecutive
functions F h

f , f = 1, . . . , l have been executed, either by
other satellites before forwarding to v or by v itself, then,
fi = l + 1. If none among the lhi

functions have been
deployed, fi = 1. If all lhi functions have been deployed,
fi = lhi + 1, implying that the final result has been
obtained, and needs to be returned to the requester.

2) Action: an action for a satellite v is defined as
a = {ai|ai ∈ {1, . . . , V + 2} ,∀i ∈ [1, . . . , b]}, where ai is
the placement decision regarding request yi. As presented
in the previous section, the requests are handled in a
first-come-first-served manner meaning that decision ai

is taken before ai+1. Let us denote as rvi and zvi the
available CR and SR after actions aj , j = 1, . . . , i have
been taken, respectively. We identify the following cases:

• ai = u ∈ {1, . . . , V } \ {v}: forward the request to
satellite u. This action is valid if v−u ISL is available
at the current timeslot.

• ai = V + 1: deploy F hi

fi
. This action is valid if the

following three conditions are satisfied: (i) not all the
functions of SFC hi have been deployed, i.e., fi ≤ lhi ;
(ii) the function is installed at satellite v, i.e., F hi

fi
∈

Fv; (iii) the CR is sufficient, i.e., rv(i−1) ≥ qhi

fi
.

• ai = V + 2: block the request.
• ai = v: carry the request to the next timeslot.

Let Av (yi) be the set of valid actions of v for request yi.
In this MAQL setup, we determine a policy, denoted by
π (yi) → ai, as a rule that maps each request yi to an
action ai ∈ Av (yi).

3) Instant Cost: for a pair of request y =
(
h, n, f, t̂

)
and action a, satellite v receives a cost c (y, a) as follows:

• if a = u ∈ {1, . . . , V } \ {v}, then if u has sufficient
SR to receive the request, the cost is equal to the
transferring time (1 timeslot). Otherwise, a penalty
Cp is incurred. Therefore, c (y, u) = 1

{
zu ≥ gh

f

}
+

Cp1
{

zu < gh
f

}
, where 1 {·} is the indicator function.

• if a = V + 1, then the cost is equal to the function’s
execution time, cv (y, V + 1) = dhi

fiv.
• if a = V + 2, then a blocking penalty is applied,

cv (y, V + 2) = Cp.
• if a = v, then a waiting cost for one timeslot is

applied, cv (y, v) = 1.
Then, Cv (s, a) =

∑b
i=1 γ̃ (yi) cv (yi, ai) is defined as the

total cost of satellite v for performing action a on state s

where γ̃ (yi) is the discount factor associated with request
yi. As presented in Sec. III, the placement for a request in
timeslot t is performed in timeslot t+1, and is discounted
by γt+1. Therefore, γ̃ (yi) = γ t̂i+1.

4) Learning mechanism & optimal action estimation:
each satellite’s goal is to learn its own optimal pol-
icy that minimizes the following long-term discounted
cost:

∑∞
t=1 E [Cv (s (t) , a (t))] =

∑
y(t)∈s(t) Ψπv

(y(t))
where Ψπv

(y(t)) =
∑∞

t=1 Eπv
[γ̃ (y(t)) cv (y (t) , a (t))] and

πv(y(t)) → a(t) is the employed policy. To approximate
the optimal policy, v approximates the optimal action for
every request in each time slot. This is done by estimating
the cost Ψπv

(y(t)) for every given request y(t). Let Qv

be the Q-table of v storing all the learned Q-values.
According to our action definition, a policy depends on the
available resources and ISLs at the considered timeslot.
Since the network topology varies deterministically and
periodically, the availability of ISLs can be determined by
τ , a time slot index relative to the system period T . Specif-
ically, a relative index τ with respect to a given timeslot t
can be computed as: τ = t1 {t < T}+mod (t, T)1 {t ≥ T}
where mod (t, T) returns the remainder of t ÷ T . To
this end, we denote by Q

(τ)
v (y (t) , a (t)) the Q-value that

estimate the cost Ψπv (y(t)). For our discussion presented
hereafter, we will consider the time slot at the present
moment and remove the index t for simplicity.

In the proposed MAQL mechanism, the environment
of each agent/satellite is non-stationary as it is affected
by the policies employed by other agents. What is more,
these policies keep updating, therefore, convergence is
not guaranteed. To tackle this issue, we promote multi-
agent cooperation among satellites in the form of task
transferring; that is when satellite v ∈ V transfers a
request y to satellite u ∈ V \ {v}, u shares its knowledge
of the Q-table as follows:

• if the request y has been encountered by satellite
u with some action a applied, i.e., Q

(τ)
u (y, a) can

be found in Qu, then min
a

Q
(τ)
u (y, a) is shared with

satellite v which indicates the minimum discounted
cost that u can achieve for request y.

• otherwise, Qinit is shared which is a constant prede-
fined initial Q-value.

Having this information available, satellite v per-
forms an iterative update using the Bellman Equation,
Q

(τ)
v (y, a) ← (1− α) Q

(τ)
v (y, a) + α

(
c (y, a) + γBQ̂

)
,

where:

Q̂ =


min

a′∈Av(y′)
Q

(τ)
v (y′, a′) , if a = v, or a = V + 1,

min
a′∈Au(y′)

Q
(τ)
u (y′, a′) , if a = u ∈ {1, . . . , V } \ {v} .

Here α, γB ∈ [0, 1] are the learning rate and the discount
factor of the iterative update step, respectively. Given an
action a, we define y′, a request transitioning from y =

(
h, n, f, t̂

)
in the next timeslot, by:

y′ =
{(

h, n, f, t̂
)

, if a = 1, 2, . . . , V,(
h, v, f + 1, t̂

)
, if a = V + 1.

(7)

Blocking a request results in a penalty Cp, and the re-
quest is permanently removed from the system. Therefore,
Q

(τ)
v (y, V + 2) = Cp always. Subsequently, satellite v

estimates its optimal action, a∗, by:

a∗ = min
a∈Av(y)

Q(τ)
v (y, a) . (8)

V. Numerical Results
In this section, we demonstrate the achieved conver-

gence and performance of the proposed method through
four experiments. We consider a system with V = 3
satellites, H = 2 types of SFC, γ = 0.6 as the discount
factor, and evu (1) = 1,∀v, u ∈ V initially. The rest of the
parameters are set as outlined in Table I, where SFC 1
consists of two functions in both setups; SFC 2 consists
of 3 functions in Setup 1 and 2 functions in Setup 2.
The pre-installed functions at satellites are as follows:
for Setup 1, F1 = {F 1

1 , F 2
1 , F 2

2 }, F2 = {F 1
1 , F 1

2 , F 2
1 , F 2

3 },
F3 = {F 1

2 , F 2
2 , F 2

3 }; for Setup 2, F1 = {F 2
1 }, F2 = {F 1

1 },
F3 = {F 1

2 , F 2
2 }. In our experiments, training and testing

are conducted alternatively, with the procedures being
identical, except that satellites select actions uniformly
randomly during training, and calculate their optimal
actions using Eq. (8) during testing. The testing is per-
formed periodically after every 103 training timeslots in
the 1st experiment, and 105 training timeslots in the other
experiments. In the 2nd and 4th experiments, the optimal
solution is attained via the DP Equation (6).

We use two metrics to evaluate the system performance
- the average cost and request serving rate. In order to
calculate the average cost during the testing phase, we
repeatedly calculate the discounted cost over 100 times-
lots for 103 trials, and then, compute the average value.
Additionally, the serving rate is determined by dividing
the number of fulfilled requests by the total requests. We
select a variable learning rate via fine-tuning: α = 0.1
initially; α = 0.01 if we detect 10 consecutive tests without
improvement in the average cost.

Experiment 1: This experiment uses Setup 1 and
demonstrates that satellites are able to cooperatively learn
an optimal placement for a given SFC. This experiment is
conducted as follows: the service request happens at the
initial timeslot, t = 1, with probability 1. The designated
requester and requested SFC are satellite 1 and SFC 2,
respectively. No further service requests occur in subse-
quent timeslots until the current request has been fulfilled,
blocked or expired. Then, the same service request occurs
again, and so on. The resulting cost is the end-to-end delay
of the placement cooperatively deployed by satellites,
with the penalty cost Cp added if the request expires
or is blocked. The results are presented in Fig. 2a where
the solutions found respectively are: blocking the request

which results in a penalty Cp = 100, a placement with a
delay of 9 timeslots, and finally, a placement with a delay
of 7 timeslots. The obtained best placement is described
by the following process:

• t = 1, 2, satellite 1 deploys F 2
1 and F 2

2 .
• t = 3, satellite 1 sends the result to satellite 2.
• t = 4− 6, satellite 2 deploys F 2

3 and holds the result.
• t = 7, satellite 2 returns the final result to satellite 1.

This corroborates that the described placement is optimal
and poses the smallest end-to-end delay of 7 timeslots.

Experiment 2: A general context is considered in this
experiment where we allow service requests to occur in
every timeslot according to the given probabilities. This
experiment aims to demonstrate the achieved convergence
in terms of request serving rate for Setup 1 (Fig. 2b)
and the average cost for Setup 2 (Fig. 3a). For Setup
1, as there are more functions installed at satellites, the
number of possible placements is large, hence, solving the
DP Equation is computationally intractable. Therefore,
the results of the DP Equation is omitted in Fig. 2b. The
two figures suggest that our learning model can converge
under both parameter settings. Furthermore, the achieved
cost differs from the optimal only by a little, as depicted
in Fig. 3a.

Experiment 3: We utilize Setup 1 and examine the
influence of the γB parameter on the overall rate of request
fulfillment of our MAQL model. We recall that γB is the
discount factor in the Q-table’s iterative update step. Our
findings, as illustrated in Fig. 2c, reveal that varying γB

correspond to different serving rates at the performance
convergence. The sweet spot for γB is around 0.6, accord-
ing to our parameter setting, with approximately 83%
of requests fulfilled. We note that γB is involved in the
updating of Q-values, and not in the average cost.

Experiment 4: Setup 2 is used in the fourth experi-
ment where we compare the achieved request serving rate
of our MAQL model with two other approaches: a random
placement policy where satellites select their actions ran-
domly and the optimal policy from the DP formulation.

TABLE I: System parameters in two setups.
Parameters Setup 1 Setup 2

Rv , ∀v 9 7
Zv , ∀v 18 7
g1

f , ∀f 3, 1 1, 1
q1

f , ∀f 5, 4 2, 2
g2

f , ∀f 1, 3, 1 3, 3
q2

f , ∀f 3, 4, 4 6, 6
dh

f1, dh
f2, dh

f3∀h, f 1, 2, 2 1, 1, 1
d1, d2 15 7

µ 0.9 0.9
µr

v , ∀v 1/3 1/3
µs

h, ∀h 1/2 1/2
T12, T13, T23 2, 4, 4 2, 2, 2

τvu, v, u = 1, 2, 3 1 1
Cp 100 100
γB 0.6 1.0

(a) (b) (c)

Fig. 2: Experiments (Setup 1) presenting the achieved convergence and performance in (a) a single-request context,
(b) a general context where service request can possibly occur in every timeslot, and (c) the influence from γB .

(a) (b)

Fig. 3: Benchmarking (Setup 2) illustrating the achieved
(a) convergence and (b) request serving performance.

In Fig. 2b, although the optimal rate is not presented, the
difference between it and the MAQL model is less than 0.2.
Compared to Fig. 3b, the difference is bigger, which is a
result of the satellites being equipped with more functions
in Setup 1 than in Setup 2. Therefore, in the former case
we have more possibilities for placements, allowing more
requests to be fulfilled.

VI. Conclusion
In this work we tackled the SFC placement problem

for LSNs in a discrete-time stochastic control framework
and aimed to optimize the long-term system performance.
First, we developed an optimal service placement policy
by formulating a DP Equation. However, solving the DP
Equation has certain drawbacks such as a high com-
putational complexity, the need for knowing the service
request probability, and the requirement of a centralized
implementation. To overcome the aforementioned chal-
lenges, we presented a MAQL approach. Still, due to
the non-stationary nature of the satellite environment,

convergence is not guaranteed in our context. To address
the problem, (i) we promoted satellites to share designated
learning parameters for every transferred request, and
(ii) we let satellites update their learning parameters
according to two distinct rules depending on their selected
actions. Experimental results presented to exhibit the
achieved convergence and performance in comparison to
the optimal solution from solving the DP Equation. For
our future work, extending the system model towards
reflecting more practical assumptions, such as dealing
with a bulk arrival of requests or introducing randomness
into the satellites’ orbits, are potential directions.

References
[1] X. Gao, R. Liu, A. Kaushik, and H. Zhang, “Dynamic resource

allocation for virtual network function placement in satellite edge
clouds,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2252–
2265, 2022.

[2] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF
placement optimization at the edge and cloud,” Future Internet,
vol. 11, no. 3, p. 69, 2019.

[3] B. Ko and S. Kwak, “Survey of computer vision-based natural
disaster warning systems,” Optical Engineering, vol. 51, pp. 901–
936, 2012.

[4] X. Gao, R. Liu, A. Kaushik, J. Thompson, H. Zhang, and
Y. Ma, “Dynamic resource management for neighbor-based VNF
placement in decentralized satellite networks,” in 6GNet, 2022,
pp. 1–5.

[5] X. Gao, R. Liu, and A. Kaushik, “Virtual network function
placement in satellite edge computing with a potential game
approach,” IEEE TNSM, vol. 19, no. 2, pp. 1243–1259, 2022.

[6] X. Qin, T. Ma, Z. Tang, X. Zhang, X. Liu, and H. Zhou,
“Sfc enabled data delivery for ultra-dense leo satellite-terrestrial
integrated network,” in IEEE GLOBECOM, 2022, pp. 668–673.

[7] Z. Jia, M. Sheng, J. Li, D. Zhou, and Z. Han, “VNF-based service
provision in software defined leo satellite networks,” IEEE Trans.
Wirel. Commun., vol. 20, no. 9, pp. 6139–6153, 2021.

[8] Z. Jia, M. Sheng, J. Li, R. Liu, K. Guo, Y. Wang, D. Chen, and
R. Ding, “Joint optimization of VNF deployment and routing in
software defined satellite networks,” in VTC, 2018, pp. 1–5.

[9] Y. Cai, Y. Wang, X. Zhong, W. Li, X. Qiu, and S. Guo, “An
approach to deploy service function chains in satellite networks,”
in IEEE/IFIP NOMS, 2018, pp. 1–7.

