
1

FEDORA: Federated Ensemble Reinforcement
Learning for DAG-Based Task Offloading and

Resource Allocation in MEC
Sangrez Khan , Amir Ali-Pour , Marios Avgeris , Julien Gascon-Samson , and Aris Leivadeas

Abstract—The increasing demand for compute intensive In-
ternet of Thing (IoT) applications has accelerated the adoption
of multi-access edge Computing (MEC) to offload tasks from
resource constrained devices to edge servers. However, making
optimal offloading decisions in multi-user MEC environments
is challenging due to the dependencies between tasks, resource
constraints, and the need to preserve user privacy. In this
work, we propose FEDORA, a federated ensemble reinforcement
learning framework for directed acyclic graph (DAG)-based
task Offloading and resource allocation in MEC environments,
that integrates twin delayed deep deterministic policy gradient
(TD3) for continuous resource allocation and multi-head deep
Q-networks (DQN) for discrete offloading decisions. To handle
task dependencies, we model applications as DAGs and gener-
ate feature embeddings for offloading decisions. Our federated
learning (FL) approach uses local training at MEC level and
periodic model aggregation at a global server to preserve data
privacy. Finally, extensive simulations across different DAG
topologies demonstrate that FEDORA reduces system costs and
improves task completion rates compared to state-of-the-art
baselines including FL-DQN, FL-DDPG, FedAvg, FedNova, and
SCAFFOLD, highlighting its scalability and robustness in large
scale MEC deployments.

Index Terms—DRL, Energy Efficiency, Federated learning,
Graph Attention Networks, IoT, MEC, Task Offloading.

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has
led to a significant increase in the amount and complexity
of data generated by resource-constrained, heterogeneous user
devices [1]. Modern IoT applications, including real-time
video analytics, autonomous vehicles, and industrial automa-
tion, require considerable computational resources and low-
latency processing, surpassing the capabilities of individual
IoT devices. Multi-access edge computing (MEC) addresses
these challenges by bringing computational resources closer
to the user [2]. This proximity reduces data transmission
delays, eases pressure on centralized cloud infrastructures, and
enhances energy efficiency through localized processing [3].
By enabling task offloading to edge servers, MEC facilitates a
balanced distribution of computational workloads, preventing

S. Khan, A. Ali-pour, J. Gascon-Samson, and A. Leivadeas are with
the Department of Software and IT Engineering, École de Technolo-
gie Supérieure (ÉTS), Université du Québec, Montréal, QC, Canada
(e-mails: {sangrez.khan.1@ens., amir.ali-pour@, julien.gascon-samson@,
aris.leivadeas@}etsmtl.ca).

M. Avgeris is with the Informatics Institute, Faculty of Science,
University of Amsterdam (UvA), Amsterdam, The Netherlands (e-mail:
m.avgeris@uva.nl).

individual devices from becoming overburdened and optimiz-
ing resource utilization across the network [4].

Despite these advancements, a critical yet frequently un-
derexplored aspect of task offloading in MEC is the inter-
dependency among tasks within contemporary applications.
Many real-world IoT applications, such as smart healthcare
systems, collaborative robotics, and augmented reality, involve
workflows where tasks are not independent but form complex
dependency structures, often represented as directed acyclic
graphs (DAGs) [5]. In these scenarios, the execution of one
task may depend on the completion of others, introducing sig-
nificant challenges in determining optimal offloading strategies
[6].

This problem, referred to as dependent task offloading,
involves making energy-efficient decisions regarding whether
tasks should be executed locally or offloaded to edge servers
[7]. These decisions significantly impact the energy consump-
tion of IoT devices and the overall network performance,
especially due to the intricate task inter-dependencies and
varied computational resource requirements (e.g., data size and
CPU processing resources), and the current state of the MEC
infrastructure. Dependent task offloading has been shown to be
an NP-hard problem, making exact solutions computationally
infeasible for large-scale systems with dynamic conditions [8].

The traditional task offloading approaches in MEC often
rely on centralized optimization or heuristic-based techniques,
which require precise, real-time global system state informa-
tion. These methods struggle with scalability, adaptability to
fluctuating network conditions, and computational overhead,
while also raising privacy concerns due to centralized data
aggregation [9]. Moreover, heuristic solutions tailored to de-
pendent tasks typically depend on static analytical models,
limiting their ability to accommodate the evolving dynamics
of IoT environments and stringent quality of service (QoS)
requirements imposed by modern applications [10]. As MEC
and IoT ecosystems continue to evolve, these limitations
underscore the need for more flexible, adaptive, and privacy
preserving strategies.

To address these challenges, recent research has pivoted
toward distributed and adaptive methodologies, with deep
reinforcement learning (DRL) gaining attraction. The inte-
gration of deep neural networks with reinforcement learning
enables systems to autonomously learn optimal decision-
making policies through interactions with dynamic environ-
ments, bypassing the need for explicit system modeling [11].
Techniques such as deep Q-networks (DQN) and actor-critic

https://orcid.org/0000-0003-4261-9656
https://orcid.org/0000-0002-7910-1159
https://orcid.org/0000-0003-4883-930X
https://orcid.org/0000-0002-4091-3790
https://orcid.org/0000-0002-2996-6824

2

methods excel in navigating the high-dimensional state and
action spaces common in MEC task offloading scenarios [12].
However, conventional DRL approaches often overlook the in-
tricate dependencies among tasks or simplify them into linear
relationships, failing to capture the full complexity of DAG-
based workflows. Additionally, their reliance on centralized
data collection introduces significant communication overhead
and privacy risks, while their stability and convergence can
be challenging in large-scale, heterogeneous environments
characterized by non-independent and identically distributed
(non-IID) user behaviors. In response to these shortcom-
ings, federated learning (FL) [13] has emerged as a privacy
preserving distributed learning paradigm. FL empowers user
devices and edge servers to collaboratively train models using
local data, aggregating only model updates rather than raw
data at a central entity. Apart from preserving user privacy,
this approach reduces communication costs and leverages
distributed computational resources [14]. The blending of FL
and DRL offers a promising combination of adaptive decision-
making with privacy and scalability. Yet, existing federated
DRL frameworks have largely overlooked the complexities of
dependent task offloading, particularly in scenarios involving
interdependent tasks modeled as DAGs and the dynamic
allocation of resources in distributed MEC settings. Recent
advancements highlight the growing relevance of dependent
task offloading, as applications increasingly exhibit DAG-
based structures where task execution order and resource
allocation are tightly coupled. These dependencies amplify the
complexity of decision-making, as offloading one task may
influence the feasibility and performance of subsequent tasks
[15]. While some studies have employed heuristic methods
to tackle this NP-hard challenge, their reliance on predefined
models limits adaptability to real-time network variations.
More recent efforts have begun to explore DRL-based solu-
tions augmented with graph attention networks (GATs) [16],
which leverage attention mechanisms to model task depen-
dencies within DAGs effectively. GATs enhance the ability to
capture long-term structural relationships, providing a richer
representation of dependencies for offloading decisions. Nev-
ertheless, these approaches often remain confined to single-
user contexts, focus narrowly on isolated objectives such as
energy or latency, while they generally inadequately address
the dynamic nature of MEC environments [17], [18].

In this context, we introduce FEDORA, a federated en-
semble reinforcement learning framework for DAG-based task
offloading and resource allocation in MEC environments. FE-
DORA extends our previous work [19], where we introduced
an energy-aware dependent task offloading scheme utilizing
GATs combined with DRL to optimize the performance of
MEC environments. In the current study, we further address
the scalability, adaptability, privacy, and efficiency of task
offloading and resource allocation decisions, particularly fo-
cusing on heterogeneous DAGs encountered in dense IoT de-
ployment. For instance, in a smart surveillance system, an IoT
camera may generate a DAG composed of object detection,
frame encoding, and anomaly alerting tasks; in a smart manu-
facturing plant, sensor nodes may generate DAGs comprising
signal preprocessing, defect detection, and report generation

tasks [2]. Our system scenario specifically considers MEC-
assisted IoT networks deployed over next-generation cellular
infrastructures (e.g., 5G/6G), in application domains such as
smart cities and industrial IoT settings, where IoT traffic is
carried over network technologies like narrowband IoT (NB-
IoT) or massive machine-type communications (mMTC). FE-
DORA iteratively executes three key phases: First, IoT devices
generate heterogeneous, interdependent tasks and share task-
specific metadata with the base station. Each base station
independently collects this information within its coverage
area and trains local DRL models based on the local network
state and task dependencies. Second, the updated DRL model
parameters from each base station are securely transmitted to
a centralized aggregator, typically hosted at a MBS which
employs federated averaging to synthesize a global model.
Third, the aggregated global model is disseminated back to
the IoT devices, enabling them to refine their local policies in
a synchronized, privacy preserving manner. By addressing the
NP-hard nature of dependent task offloading and leveraging
federated DRL with GATs, FEDORA represents a robust,
scalable, and privacy-aware solution for next-generation MEC
environments. The primary contributions of this work are as
follows:

• We propose a comprehensive system model specifi-
cally designed for DRL-assisted MEC environments. The
model effectively captures the characteristics of hetero-
geneous IoT devices with interdependent tasks structured
as DAGs, dynamically varying wireless conditions, and
variable computational resource availability.

• We formulate the joint dependent task offloading and
resource allocation challenge as a mixed-integer nonlinear
programming (MINLP) problem. Considering the NP-
hard nature and impracticality of traditional optimization
techniques in dynamic and large-scale scenarios, we
reformulate the problem as a Markov decision process
(MDP).

• We develop FEDORA, a novel federated DRL framework
integrating twin delayed deep deterministic policy gradi-
ent (TD3) for continuous resource allocation with multi-
head deep Q-networks (DQN) for discrete task offloading
decisions. Additionally, we employ GATs to accurately
capture and represent complex inter-task dependencies.

• Our framework adopts a FedProx-based FL strategy,
performing localized model training at MEC servers
combined with periodic global model aggregation. This
approach inherently ensures user data privacy, reduces
communication overhead, and enhances scalability com-
pared to centralized data aggregation methods.

• Extensive experimental evaluations demonstrate that FE-
DORA significantly outperforms conventional central-
ized methods, standard DRL approaches, and existing
federated learning techniques in terms of energy effi-
ciency, task completion latency, and QoS. Furthermore,
FEDORA achieves faster convergence and lower com-
munication overhead across various dynamic network
scenarios.

The structure of the paper is as follows. Section II provides

3

a state-of-the-art overview of the related literature. Section III
introduces the system model and formulates the correspond-
ing multi-objective optimization problem. In Section IV, we
present the MDP formulation along with the proposed hy-
brid reinforcement learning approach, incorporating DQN and
TD3, for dependent task offloading and resource allocation.
Section V discusses the simulation results and performance
evaluation. Finally, the conclusion of the paper is provided in
Section VI.

II. RELATED WORK

A. Traditional Centralized Methods

Conventional centralized approaches for task offloading and
resource allocation in MEC predominantly utilize mathemat-
ical programming and heuristic optimization strategies. For
instance, Mahmoodi et al. [20] introduced the joint scheduling
and computation offloading (JSCO) framework, which uses
the CPLEX optimizer to jointly minimize delay and energy
consumption for DAG-based tasks in MEC environment. In a
similar line, Liu et al. [21] formulated a task scheduling prob-
lem in edge computing environment and proposed the multiple
applications multiple tasks scheduling (MAMTS) algorithm,
which prioritizes tasks by estimated completion time, thereby
reducing average delays and meeting critical deadlines. Xu et
al. [22] developed dependency-aware task offloading for joint
optimization of delay and energy consumption (DTO-JODE)
scheme, targeting industry 5.0 applications, where an enhanced
particle swarm optimization (PSO) algorithm is employed for
efficient interdependent task offloading and server selection.
Liu et al. [23] presented COFE, a framework designed to
help mobile devices offload dependent task to a hybrid MEC
cloud infrastructure. The task offloading challenge is modeled
as an optimization problem aimed at minimizing the aver-
age execution time. To address this, the authors develop a
heuristic algorithm based on task ranking, capable of operating
in real-time. An et al. [24] proposed a joint optimization
model for sequential task execution, by decomposing the
main problem into two subproblems and solving it via the
golden search method. Additionally, Liu et al. [25] designed
ranking and foresight-integrated dynamic scheduling scheme
(RFID), a scheduling solution tailored for vehicular cloud
environments, which selects vehicles based on task dependen-
cies, resource availability, and node connectivity to minimize
processing time. The growing complexity of task requirements
and network conditions poses significant challenges to these
traditional computation offloading approaches. These existing
methods typically demand numerous iterations to converge to a
satisfactory local optimum, making them ineffective for real-
time decision-making. Consequently, these approaches often
incur substantial overhead, fall short of user expectations, and
inadequately address the multi-constraint execution in MEC
environments.

B. Distributed DRL-based Approaches

Recent advancements in DRL have led to the development
of distributed approaches for task offloading and resource

allocation, which do not require explicit knowledge of sys-
tem dynamics and can adaptively optimize decisions through
interactions with the environment. Liu et al. [26] proposed
a distributed collaborative dependent task offloading strategy
based on a DRL (DCDO-DRL) scheme to effectively address
the challenges of offloading radiomics-based medical image
diagnosis model (RIDM) tasks modeled as DAGs. DCDO-
DRL uses sequence to sequence (S2S) and soft actor-critic to
optimize the use of limited computing resources in hospitals
by offloading tasks to edge servers. Feng et al. [27] addressed
task dependency challenges by proposing a dependency-aware
task reconfiguration and offloading framework, effectively
decomposing complex multi-component tasks to facilitate ef-
ficient resource allocation across IoT devices. While these
methods effectively address dynamic interactions, the inherent
challenge of maintaining stable learning and convergence in
the presence of non-IID data across distributed agents remains
significant.

C. Federated Learning-enabled DRL Methods
FL has emerged as an effective mechanism to enhance

the robustness and privacy of distributed learning models in
MEC environments. Integrating FL with DRL further improves
performance by addressing the challenges posed by non-
IID data and privacy concerns. Xiao et al. [28] introduced
federated deep reinforcement learning for task offloading in
MEC-enabled heterogeneous networks, showing significant
improvements in energy efficiency and quality of service.
Wu et al. [29] combined FL with multi-agent reinforcement
learning for vehicular edge computing, demonstrating reduc-
tions in latency and energy consumption while improving task
completion rates. Zhao et al. [30] extended federated DRL to
vehicular networks, effectively managing both task offloading
and resource allocation under privacy constraints. Zhou et al.
[31] explored federated distributed deep reinforcement learn-
ing specifically for recommendation-enabled edge caching,
significantly reducing content delivery delay and improving
cache hit rates. Additionally, Zhao et al. [14] utilized feder-
ated deep reinforcement learning for secure video offloading
in Industrial Internet of Things (IIoT) networks, effectively
balancing latency, energy consumption, and security consider-
ations. Shen et al. [32] proposed an asynchronous federated
deep reinforcement learning (FDRL) framework for task of-
floading in UAV-assisted vehicular networks. They introduced
a dependency-aware MEC model that represents applications
as DAGs, and formulated a joint optimization problem to
minimize task delay and energy consumption. Proximal policy
optimization (PPO), enables UAVs to collaboratively train
offloading policies without sharing raw data. However, this
work lacks the consideration of resource allocation. Similarly,
Zhao et al. [33] proposed a privacy-preserving DAG task
offloading framework in MEC environments using a federated
deep Q-network (FDQN) with automated hyperparameter tun-
ing via the TPE algorithm. Their approach jointly optimizes
response time and energy consumption while addressing task
dependencies, system heterogeneity, and privacy concerns.

In summary, as demonstrated in Table I while various
recent works have explored dependent task offloading using

4

TABLE I: Comparison of Related Works on Dependent MEC Task Offloading and Resource Allocation

Reference Solution Type Energy Minimizing Delay Minimizing Resource Allocation DAG Dynamic Privacy
Modeling Network (FL)

Mahmoodi et al. [20] Traditional ✓ ✓ ✓
Liu et al. [21] Traditional ✓ ✓
Xu et al. [22] Traditional ✓ ✓ ✓ ✓
Liu et al. [23] Traditional ✓ ✓ ✓
An et al. [24] Traditional ✓ ✓ ✓ ✓
Liu et al. [25] Traditional ✓ ✓ ✓ ✓
Liu et al. [26] DRL ✓ ✓ ✓ ✓ ✓

Feng et al. [27] DRL ✓ ✓ ✓
Xiao et al. [28] FL-DRL ✓ ✓ ✓
Wu et al. [29] FL-DRL ✓ ✓ ✓

Zhao et al. [30] FL-DRL ✓ ✓ ✓
Zhou et al. [31] FL-DRL ✓ ✓
Zhao et al. [14] FL-DRL ✓ ✓ ✓
Shen et al. [32] FL-DRL ✓ ✓ ✓ ✓
Zhao et al. [33] FL-DRL ✓ ✓ ✓ ✓

FEDORA FL-DRL ✓ ✓ ✓ ✓ ✓ ✓

optimization, heuristic, RL, or FL approaches, they still exhibit
significant limitations. Many existing models either neglect
or inadequately handle complex task interdependencies, often
considering only simple linear or sequential task relation-
ships[34]. Furthermore, most of these studies do not compre-
hensively integrate all practical constraints such as stringent
energy limitations, delay tolerance, resource allocation deci-
sions, dynamic network conditions, and scalability in multi-
user scenarios. In contrast, FEDORA uniquely incorporates
GAT for capturing complex DAG-based task dependencies,
leverages federated reinforcement learning for scalable and
privacy preserving distributed decision-making, and rigorously
considers comprehensive constraints reflective of realistic IoT-
based MEC environments.

Macro Base Station (MBS)

Small Base Station (SBS)
SBS servers

SBS servers

SBS servers

IoT devices

IoT devices

IoT devices

Aggregator
Server

Parameters
Uploading

DistributionParameters

Fig. 1: Detailed system model illustrating a Multi-tier IoT
architecture integrated with MEC & FL.

III. SYSTEM MODEL

We consider a two-tier MEC architecture composed of
one MBS, multiple small base stations (SBSs), multiple IoT
devices within each SBS, and multiple MEC servers per
SBS as depicted in Fig. 1. SBSs are denoted by M =
{1, 2, . . . , |M|}, where each SBS m ∈ M serves a set of
IoT devices Nm = {1, 2, . . . , |Nm|}. Each device n ∈
Nm executes an application that is modeled as DAG de-
noted as Dm,n = (Xm,n, Ym,n). In each DAG the nodes

TABLE II: Summary of Main Notations

Notation Description

System Model

M Set of Small Base Stations (SBSs)
Nm Set of IoT devices under SBS m
Sm Set of MEC servers at SBS m
Dm,n DAG representing the application for device n under

SBS m
Xm,n Set of tasks for device n under SBS m
xim,n i-th task of the application on device n under SBS m
cim,n Required CPU cycles for task xim,n

dim,n Data size of task xim,n (kB)
δi,sm,n Binary offloading decision (1 if task xim,n is executed

on server s; 0 otherwise)
f i,sm,n Allocated CPU frequency for task xim,n on

server/device s (GHz)
T i,s
m,n Execution time of task xim,n on server/device s (ms)
Ei,s

m,n Energy consumption for task xim,n on server/device s
(mJ)

Ru
m,n, R

d
m,n Uplink/downlink transmission rates (Mbps)

Pu
m,n, P

d
m,s Uplink/downlink transmission power (W)

Gm,s,Hm,n Downlink/uplink channel gains (dB)
κm,n Energy efficiency coefficient of device n’s processor
Ẽn Residual energy of n IoT device
α Weighting factor for energy-delay trade-off

DRL & FL Components

St System state at time t (residual energy, task embed-
dings, channel conditions)

At Hybrid action (offloading decisions δi,sm,n and CPU
allocation f i,sm,n)

Rt Reward function balancing latency, energy, and con-
straints

θ
(d)
k Parameters of multi-head DQN for discrete offloading
ϕk, ψk,1, ψk,2 Parameters of TD3 actor and critics for continuous

resource allocation
Bk Experience replay buffer for agent k
γ Discount factor for future rewards (0 < γ < 1)
τ Soft update rate for target networks (0 < τ ≪ 1)
µ Proximal coefficient in FedProx aggregation
Ek Number of local training epochs
R Total federated training rounds
Mr ⊆ M Subset of participating agents in round r

represent the dependent tasks and are indexed by Xm,n=
{x1m,n, x

2
m,n, . . . , x

i
m,n, . . . , x

|Xm,n|
m,n } while Ym,n represents

the dependency between the tasks and is described by a

5

binary adjacency matrix Ωm,n ∈ {0, 1}|Xm,n|×|Xm,n|, where
[Ωm,n]

i,j = 1 if task xjm,n depends on task xim,n, and 0
otherwise. The number of CPU cycles required to execute
each task xim,n ∈ Xm,n is denoted as cim,n, and the data size
is given as oim,n. Each SBS m also contains multiple MEC
servers, indexed by Sm = {1, 2, . . . , |Sm|}. The execution of
each task is defined by a start time, Πi,s

m,n, and a completion
time, Ci,s

m,n, where s indicates the designated local device
or edge server. We explicitly assume the use of Orthogonal
Frequency Division Multiple Access (OFDMA), where each
IoT device is allocated orthogonal frequency subcarriers for
uplink and downlink transmissions. By design, OFDMA inher-
ently mitigates co-channel interference among simultaneously
transmitting devices [35]. Given the dependency constraints
among tasks, a task can commence execution only after all
preceding tasks have been successfully completed and the
necessary data have been transmitted. For clarity and ease
of modeling, we assume that each IoT device is capable of
executing only one task at any given time, and the initial task
is executed locally.

The MBS A serves as the central aggregator and global
model manager, coordinating all SBSs in the system. It period-
ically receives local model updates from SBSs and aggregates
them using federated aggregation. The MBS has significantly
higher computational capacity compared to SBSs and devices,
i.e., FA ≫ Fm,s, ∀m ∈ M, s ∈ Sm, where FA and Fm,s

are the computational capacity of the MBS and SBS servers,
respectively. To effectively manage task execution within an
SBS, we define δi,sm,n, a binary task placement decision variable
that determines the execution location of task xim,n ∈ Xm,n:

δi,sm,n =

1,
if task xim,n is executed

on MEC server s at SBS m,

0, otherwise,
(1)

where s = 0 corresponds to local execution at IoT device n,
and s ∈ Sm represents offloading to one of the S MEC servers
within the same SBS m. Each task must be assigned to exactly
one execution location:

|Sm|∑
s=0

δi,sm,n = 1,∀xim,n ∈ Xm,n,∀n ∈ Nm,∀m ∈M. (2)

The amount of CPU frequency allocated to a task at its selected
execution location is denoted by f i,sm,n, which serves as another
decision variable in the optimization problem and is given as:

0 ≤ f i,sm,n ≤ Fm,s
max δ

i,s
m,n,∀s ∈ Sm,∀n ∈ Nm,∀m ∈M. (3)

Fm,s
max denotes the maximum processing capacity available at

MEC server s in SBS m. This constraint ensures that f i,sm,n is
only allocated when the task is executed at location s.

A. Computation and Communication Model

1) Local Execution Model
When a task xim,n is processed locally on an IoT device,

the execution delay is defined as:

T i,0
m,n =

cim,n

f i,0m,n

, ∀m ∈M, ∀n ∈ Nm, ∀i ∈ Xm,n, (4)

where cim,n denotes the computational complexity in CPU
cycles required for task completion, and f i,0m,n is the processing
frequency allocated to the task at the IoT device. Local
execution start time is affected by its dependency structure:

Πi,0
m,n = max

j∈pre(i)
{δj,0m,nC

j,0
m,n +

|Sm|∑
s=1

δj,sm,n(C
j,s
m,n + Tj,d

m,n)},

(5)
where pre(i) represents the set of predecessor tasks; Td

m,n,j

denotes the time required to receive the results of an offloaded
predecessor task:

Ti,d
m,n =

oim,n

Rd
m,n

, ∀m ∈M, ∀n ∈ Nm, ∀i ∈ Xm,n, (6)

where oim,n represents the output data size, and the downlink
transmission rate, based on the Shannon capacity formula, is
given by:

Rd
m,n = Bm,n log2(1 +

P d
m,sGm,s

σ2
). (7)

The overall task completion time when executed locally is:

Ci,0
m,n = Πi,0

m,n + T i,0
m,n. (8)

The local execution energy consumption is modeled as:

Ei,0
m,n = κm,nc

i
m,n(f

i,0
m,n)

2, (9)

where κm,n is the energy efficiency coefficient of the device.
2) Edge Server Execution Model
For tasks offloaded to an SBS edge server, the overall exe-

cution time consists of uplink transmission, edge processing,
and downlink result retrieval. The uplink transmission delay
is given by:

Ti,u
m,n =

oim,n

Ru
m,n

, ∀m ∈M, ∀n ∈ Nm, ∀i ∈ Xm,n (10)

where the uplink transmission rate follows Shannon’s capacity
formula:

Ru
m,n = Bm,n log2(1 +

Pu
m,nHm,n

σ2
). (11)

After data transmission, the execution delay at the edge server
depends on its allocated computing resources:

T i,s
m,n =

cim,n

f i,sm,n

, (12)

The task start time at the edge server is:

Πi,s
m,n = max

j∈pre(i)
{δj,0m,n(C

j,0
m,n + Tj,u

m,n) +

|Sm|∑
s=1

δj,sm,nC
j,s
m,n}. (13)

The total task completion time when offloaded to the SBS is:

Ci,s
m,n = Πi,s

m,n + T i,s
m,n. (14)

The corresponding uplink energy consumption is:

Ei,u
m,n = Pu

m,n T
i,u
m,n. (15)

6

B. Overall System Delay and Energy Consumption

The total task completion delay considering both local and
offloaded executions is formulated as:

Tm,n=

|Xm,n|∑
i=1

[δi,0m,n T
i,0
m,n

|Sm|∑
s=1

δi,sm,n(T
i,u
m,n + T i,s

m,n + Ti,d
m,n)]. (16)

Similarly, the total energy consumption of an IoT device n is
expressed as:

Em,n =

|Xm,n|∑
i=1

[δi,0m,nE
i,0
m,n +

|Sm|∑
s=1

δi,sm,nE
i,u
m,n]. (17)

C. Problem Formulation

We tackle the twofold objective of minimizing the total
energy consumption and total task completion delay across
all devices, in a system where each device has a set of
computational tasks to process. We only consider IoT de-
vice energy consumption, under the assumption that edge
servers possess abundant energy resources; therefore, server-
side energy consumption is excluded. The total system energy
consumption is given by:

Etotal =
∑
m∈M

∑
n∈Nm

Em,n.

Similarly, the total system completion delay is:

Ttotal =
∑
m∈M

∑
n∈Nm

Tm,n.

Thus, the joint energy-delay optimization problem is formu-
lated as:

min
δi,sm,n,f

i,s
m,n

∑
m∈M

∑
n∈Nm

(Tm,n + αEm,n) (18)

s.t. Em,n ≤ Emax
m,n , ∀m ∈M,∀n ∈ Nm, (C1)

Tm,n ≤ Tmax
m,n , ∀m ∈M,∀n ∈ Nm, (C2)

|Sm|∑
s=0

δi,sm,n = 1, ∀m ∈M,

∀n ∈ Nm,∀i ∈ Xm,n, (C3)

0 ≤ f i,sm,n ≤ Fm,s
maxδ

i,s
m,n, ∀m ∈M,

∀s ∈ Sm,∀n ∈ Nm,∀i ∈ Xm,n, (C4)∑
n∈Nm

∑
i∈Xm,n

Dm,n,iδ
i,s
m,n

Rs
m,n

≤ Cm,

∀m ∈M,∀s ∈ Sm. (C5)

where 0 ≤ α ≤ 1 in the objective function (Eq. 18) is
a weighting factor to balance energy and delay. Constraint
(C1) ensures that the energy consumed by device n under
SBS m does not exceed its maximum allowed energy budget
Emax

m,n . Constraint (C2) ensures that the completion time of
each task does not exceed the device’s delay tolerance Tmax

m,n .
Constraint (C3) guarantees that each task is executed at exactly
one location (locally or MEC server), while (C4) limits CPU

frequency allocation to the capacity of the selected execu-
tion location. Constraint (C5) ensures that the total uplink
communication demand at each SBS does not exceed its
capacity Cm. The problem formulated in Eq. 18 is an NP-
hard MINLP due to the combinatorial explosion resulting
from mixed discrete and continuous decision variables, non-
linear relationships in transmission rates, and computational
complexity introduced by the interdependencies of DAGs.
Consequently, traditional exact optimization methods, which
typically require significant computational resources and ex-
ecution time, become computationally infeasible, especially
under large-scale scenarios and rapidly changing network
conditions [18]. Moreover, these traditional methods fail to
meet the strict real-time execution requirements critical for IoT
applications [3]. To overcome these challenges, we propose a
FL-based reinforcement learning solution, FEDORA, which
efficiently distributes computation across multiple devices and
edge servers, enhances scalability, preserves data privacy, and
significantly reduces communication overhead.

IV. FEDERATED LEARNING-ENABLED DRL OFFLOADING
& RESOURCE ALLOCATION

In this section, we describe the integration of FL into
DRL, our framework to enable distributed, privacy preserv-
ing, and scalable task offloading in MEC. In such systems,
offloading decisions are highly sensitive to the underlying
task graph topology, wireless channel conditions, and device
energy budgets. Centralized training approaches, which rely
on aggregating all local interaction data, are impractical due
to privacy concerns, bandwidth limitations, and the presence
of non-IID user workloads shaped by heterogeneous DAGs.
To address these challenges, we propose a FedProx- [36]
based federated reinforcement learning (FRL) framework. By
introducing a proximal regularization term into each agent’s
local objective, FedProx enhances convergence stability under
statistical heterogeneity, while allowing decentralized opti-
mization across clients. We specifically select FedProx due
to its proven effectiveness in mitigating client drift and en-
suring stable convergence under heterogeneous, non-IID local
data distributions common in MEC systems. Unlike standard
federated methods, FedProx explicitly constrains local model
updates to prevent excessive divergence from the global model.
This choice makes FedProx uniquely suited to maintaining
robust model performance and reliability in our federated DRL
setting. In our framework, as shown in Figure, 2, each edge
agent trains a local DRL model on its private experiences and
transmits only model parameters to a central aggregator. The
aggregator fuses these updates into a global model, which is
then broadcast back to all agents. This exchange avoids raw
data sharing, significantly reduces communication costs, and
supports privacy-aware large-scale learning. In the following
we explain the main phases of our framework in detail.

A. Markov Decision Process Formulation

To effectively model our joint offloading and resource
allocation problem within the proposed MEC environment,

7

Actor network

TD3

Target actor
network

Two critic
networks

Two target critic
networks

TD3 Loss

Multi-Head DQN

Target Q
network

Q network

DQN Loss

State Action Next StateReward

Experience Replay Buffer

SBS

Soft-update

weights-update

Local MEC Site

Global Aggregator

Global Model

Local model parameters

Local model parameters

Local model parameters Local model parameters

Aggregation

Upload local m
odel

weights

Fig. 2: FEDORA Architecture

we represent it as an MDP. An MDP provides a system-
atic way to formalize sequential decision-making problems,
especially suitable for stochastic and dynamic environments.
Specifically, an MDP is characterized by the tuple M =
{S,A,P,R, γ} [37], where S denote the state, A is for action,
P denotes transition probability while R and γ represents the
reward and discount factor respectively. However, due to the
high-dimensional and partially continuous nature of our state
space, the state transition probability distribution P cannot be
explicitly defined. Therefore, we utilize a simplified model-
free MDP formulation expressed as M = {S,A,R}. In the
following, we explicitly define each component in detail.

1) State (S): In our system model, time is divided into
discrete time steps t, where system observations are updated
and offloading or resource allocation actions are taken. At
each t, the current state St captures comprehensive information
reflecting the status of IoT devices, applications, MEC servers,
and wireless communication conditions. More explicitly, the
state includes the residual energy level of each IoT device
n, denoted as Ẽn(t), On(t), denotes the number of tasks
executed at t. The application specific embeddings (H ′

n),
capturing the long-term dependencies among tasks within the
application DAG, are derived via a GAT model, while the
channel conditions at t, are given by downlink and uplink
channel gains (Gs n(t),Hn s(t)) between IoT devices and MEC

servers. Thus, the state at t is formally represented as:

St = {Ẽn(t), On(t), H
′
n(t),Gs n(t),

Hn s(t) | ∀n ∈ N, s ∈ S}.
(19)

A terminal state occurs when all tasks for each IoT device
have been allocated, i.e., On(t) = |Xn|, ∀n ∈ N.

2) Action (A): The action at decision t jointly encompasses
discrete task offloading/placement decisions and the CPU
continuous resource allocations. Formally, at each t, the agent
selects the following combined action:

At = {(δi,sm,n(t), f
i,s
m,n(t)) | ∀m ∈M, n ∈ Nm,

i ∈ Xm,n, s ∈ Sm ∪ {0}},
(20)

3) Reward (R): The reward function is designed to intu-
itively guide the DRL agent towards optimal decisions that
simultaneously minimize latency and energy consumption,
maximize task completion within defined constraints, and
encourage compliance with resource limitations. Specifically,
after executing an action At in state St, the agent receives
a reward Rt, includes the combined weighted penalty of
normalized average latency and energy usage. The reward
positively considers the ratio of tasks successfully completed
within latency and energy constraints. To encourage con-
straint satisfaction, the reward incorporates strong penalties
and action masking mechanisms, thereby discouraging infea-
sible resource allocations. Violations of energy and latency
constraints are also penalized explicitly, guiding the agent

8

towards consistently feasible and efficient decisions. Formally,
the reward at t is defined as:

Rt(St,At) = −(wd
Tavg

Tmax + ϵ
+ we

Eavg

Emax + ϵ
) + R̃

−
∑
i∈S

max(0,
∑
j

Ai,j − 1)− Ve
∆E

Emax
m,n

− Vd
∆T

Tmax
m,n

,
(21)

where each term contributes to guiding the agent:
The first term, −

(
wd

Tavg

Tmax+ϵ + we
Eavg

Emax+ϵ

)
, penalizes high

average latency (Tavg) and energy consumption (Eavg) rela-
tive to their maximums (Tmax, Emax). Here, wd > 0 and
we > 0 are weights that balance the importance of latency
and energy objectives, respectively. A higher wd prioritizes
latency reduction (potentially increasing energy), while a
higher we prioritizes energy efficiency (potentially increasing
latency). ϵ > 0 is small constant for numerical stability.
R̃ ∈ [0, 1] positively rewards the agent based on the ratio of
tasks successfully completed within their latency and energy
constraints. −

∑
i∈S max(0,

∑
j Ai,j − 1) strongly penalizes

infeasible resource allocations. Ai,j is the resource allocated
for task j on server i, with server capacity normalized to 1.
This term activates if the sum of allocations on any server
exceeds its capacity. The final two terms, −Ve ∆E

Emax
m,n

and

−Vd ∆T
Tmax
m,n

, impose explicit penalties for violating global energy
and latency thresholds. Ve, Vd ∈ {0, 1} are binary indicators
for energy and delay violations, respectively. ∆E,∆T are vio-
lation margins relative to thresholds Emax

m,n , T
max
m,n , respectively.

These terms guide the agent towards consistently feasible and
efficient decisions.

B. Local Training Phase

In the local training phase, each agent k ∈ M indepen-
dently interacts with its local MDP, defined by the tuple
Mk = (Sk,Ak,Rk, γ), to optimize its local DRL policy
parameters θk. Here, Sk represents the SBS system level state
observations (as defined in Section IV-A), Ak = Ad

k × Ac
k is

a hybrid action space comprising discrete offloading decisions
(Ad

k) and continuous CPU resource allocations (Ac
k), Rk

denotes the reward function, and γ ∈ (0, 1) is the discount
factor that balances immediate and future rewards. A fully
discrete approach would require discretizing the continuous
resource allocation space, leading to significant approximation
errors, increased computational complexity, and potentially
suboptimal solutions. Conversely, a fully continuous approach
would necessitate treating offloading decisions as continuous
actions, followed by rounding or thresholding to discrete
values, which could lead to inaccurate representations and
unstable learning due to discontinuities in decision space.
Therefore, given the hybrid nature of the action space, we
adopt a hybrid actor-critic architecture to effectively handle
both discrete and continuous actions. For discrete offloading
decisions, we employ a multi-head DQN, parameterized by θdk,
to approximate the optimal action-value function Q∗(St,At),
where At ∈ Ad

k. For continuous CPU resource allocations,
we utilize the TD3 algorithm, which complements the DQN
by handling the continuous action space. The local model
parameters are θk = (θdk, ψk,1, ψk,2, ϕk), where θdk is the

multi-head DQN for discrete actions, ψk,1 and ψk,2 are TD3
critic networks, and ϕk is the TD3 actor. The global parameters
Θ = (Θd,Ψ1,Ψ2,Φ) are the aggregated versions of the
local models, with Θ′ = (Θd−,Ψ′

1,Ψ
′
2,Φ

′) denoting their
corresponding target networks.

1) Multi-head DQN for Discrete Offloading Decisions
To address the complexity of simultaneous offloading de-

cisions for multiple tasks, the multi-head DQN architecture
is designed for scalability and computational efficiency. The
neural network consists of shared hidden layers that learn
common feature representations from the system state St,
followed by multiple independent output heads. Each head
corresponds to a specific task or group of related tasks and
outputs Q-values for the discrete offloading decisions asso-
ciated with that task. This structure reduces computational
overhead and enhances the model’s ability to generalize across
tasks compared to traditional DQN. The multi-head DQN
approximates the optimal Q-function as:

Q(St,At; θ
d
k) ≈ Q∗(St,At), (22)

where Q∗(St,At) represents the optimal expected cumulative
discounted reward achievable by taking action At ∈ Ad

k (a
vector of offloading decisions) in state St.

To ensure stable and efficient training, the multi-head DQN
leverages an experience replay buffer Bk, which stores histor-
ical transitions (St,At,Rt, St+1). These transitions consist of
the observed state, action taken, reward received, and the re-
sulting next state. During each training iteration, a mini-batch
of size U is randomly sampled from Bk. Random sampling
breaks temporal correlations among sequential experiences,
stabilizing gradient updates and improving learning efficiency.

To further enhance training stability, a separate target net-
work, parameterized by θd−k , is employed. The target network
generates stable Q-value estimates and is periodically updated
to align with the primary network parameters θdk. Updates to
the target network are performed via soft updates:

θd−k ← τθdk + (1− τd)θd−k , 0 < τd ≪ 1, (23)

where τd is a small soft update rate that ensures gradual and
consistent updates to the target network.

In each training step, the multi-head DQN minimizes the
mean squared error (MSE) between the predicted Q-values
and the target Q-values. For a mini-batch of U transitions, the
target Q-value Yt for each transition is computed using the
target network:

Yt = Rt + γmax
A′

Q(St+1,A
′; θd−k), (24)

where γ is the discount factor, and A′ ∈ Ad
k represents the

possible actions in the next state St+1. The loss function for
the multi-head DQN is defined as:

LDQN(θ
d
k) =

1

U

U∑
t=1

[Yt −Q(St,At; θ
d
k)]

2. (25)

The network parameters θdk are updated by minimizing this
loss using gradient-based optimizers, such as stochastic gra-
dient descent (SGD) or Adam, which iteratively adjust the

9

parameters to reduce the prediction error. To balance explo-
ration and exploitation during training, the multi-head DQN
employs an epsilon greedy strategy. At each time step t, the
offloading decision action Ad

t is selected as follows:

Ad
t =

random action, if ζ < Ξd,

argmaxAQ(St,A; θdk), otherwise.
(26)

Here, ζ ∼ U(0, 1) is a random variable drawn from a uni-
form distribution, and Ξd denotes the exploration probability
at time step t. The Ξd is initialized with a high value (e.g.,
Ξd = 1.0) to encourage extensive exploration of the action
space and gradually decays (e.g., to Ξd = 0.01) over the
course of training, shifting the policy from exploration toward
exploitation. During inference or deployment, the multi-head
DQN deterministically selects the action that maximizes the
Q-value:

Ad
t = argmax

A
Q(St,A; θdk). (27)

2) TD3 for Continuous Resource Allocation
For continuous CPU resource allocations, the TD3 frame-

work optimizes resource allocation decisions, such as CPU
frequency assignments f i,sm,n for computational tasks xim,n,
executed either locally or at edge servers. The TD3 frame-
work, parameterized by an actor network ϕk and two critic
networks (ψk,1, ψk,2), generates continuous actions Ac

t ∈ Ac
k

to minimize task execution delay and energy consumption
while ensuring stable training through advanced techniques
like clipped double Q-learning, delayed policy updates, and
target networks. The TD3 architecture consists of:

• One Actor Network (µ(St;ϕk)): Outputs deterministic
continuous actions, such as CPU frequencies, for a given
system state St, parameterized by ϕk.

• Two Critic Networks (Q1(St,A
c
t ;ψk,1),

Q2(St,A
c
t ;ψk,2)): Independently estimate Q-values

for state-action pairs, parameterized by ψk,1 and ψk,2,
reducing overestimation bias.

• Target Networks (µ′(St;ϕ
′
k), Q′

1(St,A
c
t ;ψ

′
k,1),

Q′
2(St,A

c
t ;ψ

′
k,2)): Provide stable target values for

training, parameterized by ϕ′k, ψ′
k,1, and ψ′

k,2.
During training, the actor network generates a continuous

action with added exploration noise:

Ac
t = µ(St;ϕk) + Ξt, Ξt ∼ N(0, σ2), (28)

where Ξt is Gaussian noise with variance σ2. To ensure
feasibility, actions are clipped within allowable resource limits:

Ac
t = clip(Ac

t ,A
c
min,A

c
max). (29)

The critic networks are trained by minimizing the MSE loss:

LTD3(ψk,j) =
1

U

U∑
t=1

[yt −Qj(St,A
c
t ;ψk,j)]

2, j ∈ {1, 2},

(30)
where the target yt is computed using the target networks:

yt = Rt + γ min
j=1,2

Q′
j(St+1,A

′;ψ′
k,j), (31)

Algorithm 1: FEDORA Training Phase
Input: M, Nk , Sk , Dk,n, B, B, h, R, γ, τ , Ξ, Ξt, σ2, σ̄2, µ, Ek

1 Initialize: Θ(0) = (Θd,Ψ1,Ψ2,Φ), Θ′(0) = (Θd−,Ψ′
1,Ψ

′
2,Φ

′)

θ
(0)
k = (θdk, ψk,1, ψk,2, ϕk), Bk ∀k ∈ M

2 for r = 1 to R do
3 for each k ∈ M in parallel do
4 Synchronize: θ(r)

k ← Θ(r−1)

5 for e = 1 to Ek do
6 Sample initial state S0 randomly from Sk
7 for t = 0 to maxn∈Nk

(|Xk,n|)− 1 do
8 if |Bk| < U OR system constraints not satisfied

then
// Random exploration

9 Select Ad
t ∈ Ad

k randomly
10 Select Ac

t ∈ Ac
k randomly within

(Ac
min,A

c
max)

11 else
// Exploration-exploitation
strategy

12 Select Ad
t using Eq. (27)

13 Select Ac
t using Eq. (29)

14 Execute action At = (Ad
t ,A

c
t), observe reward

Rt+1 using Eq. (21), next state St+1

15 Store (St,At,Rt+1, St+1) in Bk

16 if |Bk| ≥ U AND system constraints satisfied
then

// Training step with FedProx
regularization

17 Sample mini-batch of B transitions
{(Si,Ai,Ri+1, Si+1)}Bi=1 from Bk

18 Compute DQN target using Eq. (24)
19 Compute DQN loss using Eq. (25)
20 Compute TD3 target using Eq. (31)
21 Compute TD3 critic loss using Eq. (30)
22 Compute total loss with FedProx using

Eq. (35), Eq. (36)
23 Update θk = (θdk, ψk,1, ψk,2, ϕk) by

minimizing Lk(θk) using Adam
24 if t mod φ = 0 then
25 Update actor using Eq. (32)
26 Update target networks using Eq. (23),

Eq. (34)

27 Select participating agents Mr ⊆ M
28 Aggregate at A: Θ(r) =

∑
k∈Mr

nk∑
k′∈Mr

nk′
θ
(r)
k

29 Broadcast Θ(r) to all agents k ∈ M

Output: θk = (θdk, ψk,1, ψk,2, ϕk) ∀k ∈ M

and A′ = µ′(St+1;ϕ
′
k) + ξ, with ξ ∼ N(0, σ̄2) representing

the Gaussian noise added to the target actor’s action for
smoothed exploration. To stabilize training, TD3 employs
delayed policy updates, updating the actor network parameters
ϕk less frequently (e.g., every φ critic updates, where φ
is a hyperparameter). The actor is updated using the policy
gradient to maximize the Q-value from the first critic:

∇ϕk
J(ϕk) =

1

U

U∑
t=1

∇AQ1(St,A;ψk,1)|A=µ(St;ϕk)

· ∇ϕk
µ(St;ϕk).

(32)

The target networks are updated softly to ensure gradual
and stable training dynamics:

ψ′
k,j ← τcψk,j + (1− τc)ψ′

k,j , j ∈ {1, 2}, (33)

ϕ′k ← τcϕk + (1− τc)ϕ′k, (34)

10

where τc ≪ 1 is the soft update rate. During inference, the
TD3 agent deterministically selects actions Ac

t = µ(St;ϕk),
ensuring optimal CPU resource allocations without exploration
noise. The local training combines both losses into a single
local objective:

Lk(θk) = LDQN(θ
d
k) + LTD3(ψk,1, ψk,2, ϕk). (35)

To ensure convergence stability under statistical hetero-
geneity and to control client drift, we incorporate FedProx
regularization into the local training objective:

θ
(r)
k = argmin

θk

[
Lk(θk) +

µ

2
∥θk −Θ(r−1)∥22

]
, (36)

where Θ(r−1) represents the global model parameters from
the previous aggregation round r ∈ R , and µ > 0 is the
proximal coefficient controlling the trade-off between local
training and global model consistency. A small value of the
proximal coefficient µ allows local models to prioritize their
own data, which may improve local performance but increases
the risk of divergence in non-IID settings. In contrast, a large
µ enforces closer alignment with the global model, enhancing
consistency and convergence but potentially limiting the ability
of local models to adapt to unique data characteristics.

C. Global Aggregation and Model Fusion

To address system and data heterogeneity across agents
in the MEC framework, we employ FedProx for global
aggregation and model fusion. After each agent k ∈ M
completes Ek local training epochs, it transmits its updated
local parameters θ

(r+1)
k = (θdk, ψk,1, ψk,2, ϕk) to the global

aggregator A. Unlike standard local training, FedProx modifies
the local objective to include a proximal term that keeps local
parameters close to the global model, enhancing stability in
non-IID workloads:

min
θk

[
Lk(θk) +

µ

2
∥θk −Θ(r)∥22

]
, (37)

where Lk(θk) = LDQN(θ
d
k)+LTD3(ψk,1, ψk,2, ϕk) is the local

loss, Θ(t) is the global model at round r. The number of
local epochs Ek may vary across agents due to computational
heterogeneity, and FedProx accommodates partial participation
by allowing a subset of agents to contribute in each round. The
aggregator performs a federated aggregation step to compute
the new global model parameters Θ(t+1):

Θ(r+1) =
∑
k∈Mt

nk∑
k′∈Mr

nk′
θ
(r+1)
k , (38)

where Mr ⊆ M is the subset of agents participating in
round r, and nk is a weighting factor proportional to the
number of transitions in agent k’s experience replay buffer
or a priority factor based on task criticality in the MEC
system. This aggregation step mirrors the weighted averaging
of FedAvg [38] but is applied to the heterogeneous updates
produced by the proximal term modified local training. The
aggregator broadcasts the updated global model Θ(r+1) back
to all agents, which update their local parameters:

θk ← Θ(r+1), ∀k ∈M. (39)

Each agent then resumes local training using the aggregated
parameters, incorporating the proximal term to ensure align-
ment with the global model. The cycle of local training,
global aggregation, and parameter distribution repeats for R
federated rounds or until convergence. FEDORA employs
a robust global aggregation mechanism based on FedProx,
which introduces a proximal regularization term in the local
training phase. This term penalizes significant deviations of
local models from the global model, thereby mitigating the
risk of client drift caused by heterogeneous task dependencies
and non-IID data distributions. Specifically, the global model
aggregation follows a weighted averaging scheme, where the
local model parameters are combined proportionally to the
quantity and quality of the experiences gathered by each
agent. Such an approach effectively balances the heteroge-
neous contributions from diverse DAG structures, preserving
performance by limiting drastic divergence among local mod-
els. Consequently, FEDORA ensures stable convergence and
consistently high performance across different DAG types.
The complete training process of FEDORA is outlined in
Algorithm 1.

D. Convergence Analysis:

To analyze the convergence behavior of FEDORA, we
consider its core components: Multi-head DQN for discrete
offloading decisions, TD3 for continuous resource allocation,
and FedProx for stabilizing federated updates. The Q-value
update in Multi-head DQN follows the Bellman expectation
equation: Q(St,At) ← E

[
Rt + γmaxAt+1

Q(St+1,At+1)
]
,

which is known to be a γ-contraction in the sup-norm [37],
ensuring convergence to a unique fixed point Q∗ under sta-
ble target updates and sufficient exploration. For the TD3
module, convergence toward a locally optimal deterministic
policy µ(St) is supported by the deterministic policy gradient
theorem: ∇θJ(µθ) = ESt∼D [∇AtQ(St,At)∇θµθ(St)], with
clipped double Q-learning and delayed updates enhancing
stability. To address client drift and statistical heterogeneity in
federated settings, FedProx modifies the local optimization at
each agent as minθk

[
Lk(θk) +

µ
2 ∥θk −Θ(r)∥2

]
, constraining

local updates and promoting convergence. These components
collectively ensure that FEDORA converges reliably to an
effective hybrid offloading and resource allocation policy
across distributed, heterogeneous MEC agents.

V. RESULTS AND DISCUSSION

We emulate an FL environment where multiple edge de-
vices collaborate to train a global model while preserving
data privacy. The system consists of M = 6 SBSs and a
total of |Nm| = 60 user devices, where each SBS contains
|S| = 3 edge servers and 10 user devices. Each device is
responsible for executing computational tasks represented as
DAGs. The tasks are offloaded dynamically based on network
conditions, resource availability, and learning-based decision-
making strategies. Unlike traditional single process simula-
tions, our setup leverages multiple microservices deployed in
Docker containers, where each container represents a separate
MEC site or user agent. The containers are managed using

11

Linear Branching Grid

TreeStar

Fig. 3: Type of DAGs used for evaluation.

a Docker Compose setup, which includes the FL aggregator
running in a dedicated container and handling global model
aggregation using a FastAPI backend. Each participating agent
runs in a separate container and is assigned a specific DAG
topology. The entire system was deployed in a custom MEC
emulation testbed at ÉTS to simulate realistic FL and task
offloading environments. The DAG structures illustrated in
Fig. 3 include:

• Linear: Sequential execution of tasks where each task
depends only on the previous one.

• Branching: Tasks have multiple dependencies, allowing
for parallel execution.

• Grid: A structured DAG where tasks are arranged in a
2D grid with interdependencies.

• Star: A central task connects to multiple independent
tasks.

• Tree: A hierarchical task structure with branching depen-
dencies.

• Mixed: A hybrid of the above structures to ensure gen-
eralization.

TABLE III: Simulation and Training Parameters

Parameter Description

Federated rounds 90
Local training episodes per round 100
Tasks per DAG Uniformly distributed: 5 to 30 tasks
Task data sizes (oim,n) Randomly assigned: 5 KB to 300 KB
Task computational workload (cim,n) Uniform distribution: 106 to 108 Hz
Device transmission power (Pu

m,n) 200 mW
Edge server transmission power (P d

s n) 1 W
CPU frequency (user devices, Fm,0

max) 1 GHz
CPU frequency (edge server, Fm,s

max) 2.4 GHz
Channel gain (Gs n, Hn s) Dynamic: −5 dB to −70 dB
DQN structure 3 fully connected layers (256 neurons each, ReLU)
DQN learning rate 0.0001 (Adam optimizer)
TD3 structure (actor and critic) 3 hidden layers (512, 256, 256 neurons)
TD3 learning rate 0.00001 (Adam optimizer)
Experience replay buffer size (|B|) 50000
Batch size U 256
Soft update parameter (φ) 0.005
CPU Ampere Altra (80 cores, 256 GB RAM)
GPU NVIDIA RTX 6000 Ada Generation (48 GB memory)

In our setup, each SBS is assigned a dominant DAG type
comprising 70 % of its local dataset, while the remaining 30%
is a mix of other DAG structures. This setup reflects realistic
non-IID distributions across MEC nodes and ensures both
workload diversity and robustness testing for the federated
DRL framework. Each DAG agent container or FL client
is assigned an amount of NVIDIA GPU using Docker’s
GPU resource allocation for efficient training. The complete

details of the FL setup, including the training rounds, neural
network architectures, learning rates, and hardware specifics,
are summarized in Table III. Task parameters, such as the
number of tasks per DAG instance, data sizes, computational
workloads, and wireless channel dynamics, are also detailed
in the same table. These values are representative of typical
settings of task offloading in MEC literature [3], [18].

To evaluate the performance of the proposed FEDORA
framework, we compare it against a diverse set of baselines,
grouped into three main categories: i) federated optimization,
ii) FRL, and iii) heuristic baselines. These methods provide a
comprehensive view of how different aggregation and learning
strategies impact system performance:

i) Federated Optimization Baselines
• FedAvg [38]: Performs simple averaging of local model

weights. It assumes IID data across clients and does not
correct for drift in heterogeneous settings.

• FedNova [39]: Normalizes local updates based on the
number of local training steps, mitigating objective in-
consistency in non-IID data distributions.

• SCAFFOLD [40]: Incorporates control variates to ad-
dress client drift and improve convergence under statisti-
cal heterogeneity.

ii) FRL Baselines
• FL-DQN [41]: A federated version of DQN, where

clients train Q-value functions locally and synchronize
periodically using federated averaging.

• FL-DDPG [42]: Applies the DDPG actor-critic algorithm
in a federated manner, suitable for continuous action
spaces like CPU resource allocation. Both actor and critic
networks are trained and aggregated across clients.

iii) Heuristic Baselines
• ALE [17], [43], [44]: All local execution, where all the

task are executed at the local device.
• AEE [17],[34]: All edge execution, where all tasks are

offloaded to edge servers, regardless of system state.
• ARE [44], [34]: All random execution, where offload-

ing and resource decisions are made randomly, without
learning or task awareness.

We selected FL-DQN and FL-DDPG as baselines, as they
are well-suited for handling discrete and continuous action
spaces, respectively,This choice enables a clear and fair eval-
uation of FEDORA’s effectiveness in jointly handling task
offloading and resource allocation through its hybrid DRL
approach. The initial set of experiments presented in Fig. 4
illustrates the training performance of FEDORA in comparison
to existing DRL, federated optimization baselines, and central-
ized methods, measured by the average reward obtained during
training episodes. The centralized methods concern training
without the distributed framework of FL. Fig. 4a highlights the
performance comparison among the proposed FEDORA, Fed-
DQN, and Fed-DDPG methods. FEDORA exhibits rapid con-
vergence, achieving substantial improvement within the first
2,000 training episodes, and continues to enhance performance
thereafter, ultimately reaching an average reward close to 500.
In contrast, Fed-DDPG and Fed-DQN methods converge to
significantly lower performance levels, stabilizing at average

12

0 2000 4000 6000 8000
Episodes

0

100

200

300

400

500

Av
er
ag

e
Re

wa
rd

FEDORA Fed-DDPG Fed-DQN

(a) Average reward analysis.

0 2000 4000 6000 8000
Episodes

0

100

200

300

400

500

Av
er
ag

e
Re

wa
rd

FEDORA FedAvg FedNova SCAFFOLD

(b) Average reward analysis.

0 2000 4000 6000 8000
Episodes

0
100
200
300
400
500

Av
er
ag

e
Re

wa
rd

FEDORA Centralized

(c) Federated versus Centralized Learning.

Fig. 4: Benchmarking training performance of FEDORA against FRL, FL, and Centralized methods.

0 5 10 15 20 25 30 35
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1
- M

SE

Train Metric (1-MSE) Validation Metric (1-MSE)

(a) GAT model accuracy analysis.

0 5 10 15 20 25 30 35
Epoch

0.0

0.2

0.4

0.6

0.8
Lo

ss

Train Loss Validation Loss

(b) GAT model loss analysis.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
Error (Predic ed - Ac ual)

0

200

400

600

800

1000

Co
un

Compu ing Cycle Error Da a Size Error

(c) GAT model feature prediction analysis.

Fig. 5: Analyzing FEDORA’s GAT model performance for task dependency learning.

rewards of approximately 180 and 140, respectively. These
results demonstrate that FEDORA can learn more effective
policies more efficiently compared to these baseline methods.
The advantage of FEDORA arises primarily from its ability
to handle the hybrid action space. Specifically, while FL-
DQN can handle discrete actions, it struggles with continuous
actions. Conversely, FL-DDPG addresses continuous actions
but is ineffective with discrete ones. FEDORA integrates a
multi-head DQN to efficiently handle the extensive discrete
action space and leverages TD3 to manage continuous actions.
This combined approach provides FEDORA with a significant
advantage in terms of overall reward performance.

Fig. 4b, compares FEDORA against FL algorithms, includ-
ing FedAvg, FedNova, SCAFFOLD. Among these methods,
FEDORA consistently outperforms all FL. It achieves the
highest average reward across training episodes, showcasing
superior robustness in FRL scenarios. SCAFFOLD, while
performing better than FedAvg and FedNova with an average
reward around 250, still lags behind FEDORA in both reward
and convergence consistency. FedNova, although designed to
mitigate client drift through normalization techniques, exhibits
slow convergence and achieves an average reward below 180
similar to FedAvg, which struggles significantly under non-IID
conditions, a characteristic of our scenario. FEDORA notably
outperforms SCAFFOLD in the FRL context, attributed to
its robustness against client heterogeneity. The proximal term
in FEDORA effectively regularizes local updates, enhancing
training stability despite non-IID data and diverse computa-
tional capabilities. Conversely, SCAFFOLD’s dependence on
accurate control variates proves less effective under highly
dynamic environments and resource constraints, resulting in
less consistent convergence.

Fig. 4c contrasts FEDORA with a traditional centralized
learning approach, often perceived as ideal due to its access to
global information. In practice, however, centralized methods
face significant challenges, including an excessively large
state space due to the aggregation of information from all
users. This complexity makes the centralized learning process
cumbersome and less effective. In contrast, FEDORA dynam-
ically assigns tasks between local and edge resources based
on instantaneous system conditions, effectively optimizing
computational and communication efficiency. This adaptive
strategy results in superior learning performance compared
to the centralized baseline, emphasizing FEDORA’s practical
advantages and robustness. FEDORA’s superior performance
is largely attributed to its capability to efficiently manage the
challenges posed by non-IID data and partial observability
across agents. Unlike traditional federated optimization or
standard federated reinforcement learning methods, FEDORA
promotes effective knowledge transfer among clients, accel-
erating policy convergence and achieving higher long-term
rewards, particularly in highly heterogeneous environments.

Fig. 5 demonstrates the training dynamics and predictive
performance of the GAT model, designed to learn task features
and structural dependencies of the DAGs. The model was
trained over 35 epochs, and its performance was evaluated on a
test set of 1000 samples. The results are summarized through
training and validation loss as scatter plots of actual versus
predicted values and error distributions, providing insights into
the model’s learning behavior and accuracy. Fig. 5a illustrates
the training and validation accuracy over the 35 epochs. The
training accuracy rises from 0.2 to 0.95, while the validation
accuracy (dashed orange line) increases from 0.5 to 0.94,
both plateauing close to 0.9 after 20 epochs. This smooth,

13

Linear Branching Mix Grid Star Tree
DAG Types

0.00

0.05

0.10

En
er
gy
 (J
)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(a) Energy consumption analysis.

Linear Branching Mix Grid Star Tree
DAG Types

0.0

0.1

0.2

Ti
m
e
(s
)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(b) Task completion time analysis.

Linear Branching Mix Grid Star Tree
DAG Types

0.00

0.20

0.40

0.60

0.80

1.00

Co
m
po
sit
e
Co
st

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(c) Overall system cost analysis.

Fig. 6: Benchmarking FEDORA’s performance across various DAG topologies.

12 24 36 48 60
Number of Users

0.00

0.05

0.10

0.15

En
er
gy

 (J
)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(a) Energy consumption analysis.

12 24 36 48 60
Number of Users

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(b) Task completion time analysis.

12 24 36 48 60
Number of Users

0.00

0.20

0.40

0.60

0.80

1.00

Co
m

po
sit

e
Co

st

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(c) Overall system cost analysis.

Fig. 7: Benchmarking FEDORA’s performance across varying number of users.

5 10 15 20 25 30
Number of Tasks

0.00

0.05

0.10

0.15

En
er

gy
 (J

)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(a) Energy performance.

5 10 15 20 25 30
Number of Tasks

0.00

0.02

0.04

Ti
m
e
(s
)

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(b) Task completion time performance.

5 10 15 20 25 30
Number of Tasks

0.00

0.20

0.40

0.60

0.80

1.00

Co
m
po
sit
e
Co

st

FEDORA
FL-DQN

FL-DDPG
ALE

AEE
ARE

(c) Overall system cost.

Fig. 8: Benchmarking FEDORA’s performance across varying number of tasks.

continuous rise in accuracy, coupled with the decreasing loss
and confirms the GAT model’s effective learning of task
features and dependencies. The small gap between the training
and validation accuracy further indicates robust generalization,
a critical factor for practical deployment.

Fig. 5b shows the training and validation loss of the GAT
model over 35 epochs. The training loss decreases from 0.8 to
below 0.05, while the validation loss follows a similar trend,
starting at 0.4 and converging to around 0.05. The continual
decrease in both losses indicates successful convergence, with
the gradient descent algorithm effectively minimizing the loss
function. The close alignment of the training and validation
loss curves suggests minimal overfitting, highlighting the
model’s ability to generalize well to unseen DAGs.

Figure 5c depicts the error distributions for features pre-
dictions, calculated as error = predicted − actual. The two
predicted features computing circle (CPU cycles required to
execute a task) and data size (the amount of data processed)
represent key structural and resource related attributes of a
DAG. Both distributions are approximately normal, centered
near zero, with most errors within [−0.25, 0.25]. The comput-
ing cycle errors (blue line) exhibit a narrower spread compared

to data size (orange line), which shows slightly larger variance
with errors extending to [−0.75, 0.75]. These two features
are important as they directly influence task placement and
resource allocation. Accurate prediction ensures that the model
can generalize effectively to unseen DAGs. The symmetry of
both distributions indicates no systematic bias, while the small
error magnitudes confirm the model’s predictive reliability for
both attributes.

To investigate FEDORA’s adaptability across diverse work-
flow structures, in Fig. 6 we evaluate its performance on the
various DAG types. Fig. 6a presents the energy consumption
across all DAG types. ALE and ARE incur the highest energy
usage due to either exhaustive local computation or uncoor-
dinated execution, respectively. AEE is energy efficient but at
the expense of increased delay. FEDORA achieves a balanced
energy profile, outperforming FL-DQN, FL-DDPG, and the
random or static baselines across all DAG types. FL-DQN
works well in task placement however, for resource allocation,
which is a continuous action, FL-DQN struggles. Similarly, the
FL-DDPG works well in a continuous action space, however,
in task placement decisions it struggles. FEDORA, which
handles both the discrete and continuous actions in efficient

14

manner, reduces the energy consumption of the system.
The latency analysis, shown in Fig. 6b, highlights FE-

DORA’s lower execution delays against all baselines except
for ALE. The ALE strategy does not introduce a transmission
delay, thus it incurs a lower delay at the expense of a high
energy consumption. While ARE and AEE consistently suffer
from latency due to the edge transmission overhead delay, FE-
DORA maintains short completion times through parallelism-
aware task placement and dynamic system state adaptation.
To capture the trade-off between energy consumption and
latency, while accounting for constraint violations, we define
the normalize composite cost as: composite cost = (αEavg +
(1 − α)Tavg + Vtot) where Eavg and Tavg are the average
energy consumption and latency per device, α = 0.5 balances
the energy-latency trade-off. The term Vtot = Vr + Ve + Vd

introduced in the composite cost differ from the penalties
previously described in Equation (21). Here, they represent
counts of constraint violations for resource, energy and delay
rather than penalty magnitudes. The composite cost results
presented in Fig. 6c reinforce these observations; FEDORA
consistently yields the lowest cost, indicating optimal trade-
offs regardless of DAG structure. Even in complex DAGs
like Grid or Tree, where task dependencies and multiple
paths introduced scheduling challenges, FEDORA remains
both energy-aware and latency efficient with lower system
cost. This experiment confirms that FEDORA generalizes
effectively across a wide range of DAG topologies, making it a
robust and topology agnostic solution for MEC environments.

To evaluate the impact of the number of users per site
on the performance, Fig. 7 illustrates the evaluation of the
considered methods when varying the number of users from
12 to 60. Fig. 7a illustrates the average energy consumption
across different user densities. As expected, AEE consistently
demonstrates the lowest energy usage by offloading all tasks
to the edge servers. In contrast, ALE incurs the highest
energy cost due to heavy reliance on local computation.
Our proposed FEDORA framework achieves a well-balanced
energy profile, outperforming FL-DDPG and FL-DQN, and
substantially surpassing ALE and ARE. This efficiency is
due to FEDORA’s hybrid task offloading strategy, which
dynamically adjusts decisions based on local energy conditions
and network congestion. FEDORA, by integrating a hybrid
actor-critic architecture, is explicitly designed to handle both
discrete and continuous actions. This makes FEDORA more
adaptable and expressive in complex MEC environments.

Latency results, depicted in Fig. 7b, further support this
observation. While ALE achieves low delay due to zero
communication overhead, both AEE and ARE show increasing
delays with higher user numbers. FEDORA maintains low
completion times throughout, due to its efficient offloading
and adaptive scheduling, outperforming both FL-DQN and FL-
DDPG. Fig. 7c presents the composite cost results. Across all
settings, FEDORA achieves the lowest overall cost, validating
its effectiveness in jointly optimizing latency and energy under
FL constraints.

In Fig. 8, we further evaluate FEDORA’s performance
against the baseline methods under varying number of tasks
(from 5 to 30) to assess its robustness and efficiency in MEC

environments. As illustrated in Fig. 8a, energy consumption
trends reveal each method’s adaptability to workload intensi-
fication. ALE shows a sharp increase in energy usage due to
its on-device execution strategy, which becomes unsustainable
as task volume grows. In contrast, AEE maintains consistently
low energy consumption by aggressively offloading all tasks to
the edge. FEDORA strikes an effective balance between these
extremes, consuming as well significantly less energy than FL-
DDPG and FL-DQN, while also outperforming ALE and ARE.
This highlights FEDORA’s adaptive offloading mechanism,
which dynamically responds to rising workloads by consid-
ering both device energy states and offloading opportunities.

Latency performance, shown in Fig. 8b, further validates
FEDORA’s efficiency. While ARE and AEE suffer from
increased delays due to server congestion and inefficient task
scheduling, FEDORA sustains low task completion times
through efficient decision-making. Compared to FL-DDPG
and FL-DQN, FEDORA’s hybrid control strategy enables
more effective resource management under high task loads.
The overall system efficiency, measured by the composite
cost metric in Fig. 8c, confirms that FEDORA consistently
achieves the lowest total cost across all task load levels.
This underscores FEDORA’s capability to jointly minimize
latency and energy consumption, demonstrating its scalability
and effectiveness in handling increasing workload intensity.
In summary, this task-based evaluation shows that FEDORA
delivers high performance not only with growing user density
but also under escalating task load. Its adaptability to both
dimensions of system load underscores its practical viability
and robustness for real-time federated MEC applications.
However, significant increase in the number of devices and
the complexity of DAGs poses significant challenges in terms
of computational and training resource requirements.

VI. CONCLUSION

In this paper, we introduced FEDORA, a federated ensem-
ble reinforcement learning framework for DAG-based task
offloading and resource allocation in MEC environments. Rec-
ognizing the limitations of traditional centralized approaches
for practical large-scale and dynamic IoT scenarios, we re-
formulated the problem into an MDP, enabling an efficient
solution through reinforcement learning. Our proposed FE-
DORA framework leverages FL and GAT to effectively cap-
ture complex task interdependencies and dynamic network
states without compromising user privacy or introducing ex-
cessive communication overhead. Extensive simulation results
demonstrate that FEDORA significantly enhances energy ef-
ficiency, reduces task completion latency, and substantially
improves QoS, outperforming traditional methods across vari-
ous dynamic scenarios. Furthermore, FEDORA exhibits rapid
convergence, robust scalability, and minimal communication
overhead, making it particularly well suited for practical
deployment in resource-constrained and IoT systems. Future
work will adapt FEDORA to support highly mobile IoT
platforms such as drones and connected vehicles integrating
it with forthcoming 6G continuums to meet the stringent
demands of both ultra-reliable low-latency communications
(URLLC) and enhanced mobile broadband (eMBB) services.

15

REFERENCES

[1] H. Zhou, Z. Zhang, Y. Wu, M. Dong, and V. C. Leung, “Energy
efficient joint computation offloading and service caching for mobile
edge computing: A deep reinforcement learning approach,” IEEE Trans.
Green Commun. Networking, vol. 7, no. 2, pp. 950–961, 2022.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surv. Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[4] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, vol. 195, p. 108177, 2021.

[5] Z. Cao, X. Deng, S. Yue, P. Jiang, J. Ren, and J. Gui, “Dependent Task
Offloading in Edge Computing Using GNN and Deep Reinforcement
Learning,” IEEE Internet of Things Journal, vol. 11, no. 12, pp. 21 632–
21 646, 2024.

[6] X. Chen and G. Liu, “Energy-efficient task offloading and resource
allocation via deep reinforcement learning for augmented reality in
mobile edge networks,” IEEE Internet Things J., vol. 8, no. 13, pp.
10 843–10 856, 2021.

[7] H. Jiang, X. Dai, Z. Xiao, and A. Iyengar, “Joint task offloading
and resource allocation for energy-constrained mobile edge computing,”
IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4000–4015, 2022.

[8] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A survey and
taxonomy on task offloading for edge-cloud computing,” IEEE Access,
vol. 8, pp. 186 080–186 101, 2020.

[9] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for Internet of Things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp.
9441–9455, 2020.

[10] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient de-
pendent task offloading for multiple applications in MEC-cloud system,”
IEEE Trans. Mob. Comput., vol. 22, no. 4, pp. 2147–2162, 2021.

[11] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for AI-enabled wireless networks: A tutorial,” IEEE Commun.
Surv. Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021.

[12] Y.-C. Wu, T. Q. Dinh, Y. Fu, C. Lin, and T. Q. Quek, “A hybrid DQN
and optimization approach for strategy and resource allocation in MEC
networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4282–
4295, 2021.

[13] J. Konečnỳ et al., “Federated learning: Strategies for improving com-
munication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[14] T. Zhao, F. Li, and L. He, “Secure video offloading in MEC-enabled IIoT
networks: A multicell federated deep reinforcement learning approach,”
IEEE Trans. Ind. Inf., vol. 20, no. 2, pp. 1618–1629, 2023.

[15] W. Fan et al., “DNN deployment, task offloading, and resource allocation
for joint task inference in IIoT,” IEEE Trans. Ind. Inf., vol. 19, no. 2,
pp. 1634–1646, 2022.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[17] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas, “De-
pendent task offloading for edge computing based on deep reinforcement
learning,” IEEE Trans. Comput., vol. 71, no. 10, pp. 2449–2461, 2021.

[18] J. Li, B. Gu, Z. Qin, and Y. Han, “Graph tasks offloading and resource
allocation in multi-access edge computing: A DRL-and-optimization-
aided approach,” IEEE Trans. Network Sci. Eng., vol. 10, no. 6, pp.
3707–3718, 2023.

[19] S. Khan, M. Avgeris, J. Gascon-Samson, and A. Leivadeas, “EMD-
TORA: Energy-aware multi-user dependent task offloading and resource
allocation in MEC using graph-enabled DRL,” IEEE Trans. Green
Commun. Networking, 2024.

[20] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint schedul-
ing and cloud offloading for mobile applications,” IEEE Trans. Cloud
Comput., vol. 7, no. 2, pp. 301–313, 2016.

[21] Y. Liu et al., “Dependency-aware task scheduling in vehicular edge
computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961–4971, 2020.

[22] C. Xu et al., “Energy consumption and time-delay optimization of
dependency-aware tasks offloading for industry 5.0 applications,” IEEE
Trans. Consum. Electron., vol. 70, no. 1, pp. 1590–1600, 2023.

[23] Liu, Jiagang and Ren, Ju and Zhang, Yongmin and Peng, Xuhong
and Zhang, Yaoxue and Yang, Yuanyuan, “Efficient dependent task
offloading for multiple applications in mec-cloud system,” IEEE Trans.
Mob. Comput., vol. 22, no. 4, pp. 2147–2162, 2023.

[24] X. An, R. Fan, H. Hu, N. Zhang, S. Atapattu, and T. A. Tsiftsis, “Joint
task offloading and resource allocation for IoT edge computing with
sequential task dependency,” IEEE Internet Things J., vol. 9, no. 17,
pp. 16 546–16 561, 2022.

[25] Z. Liu, M. Liwang, S. Hosseinalipour, H. Dai, Z. Gao, and L. Huang,
“RFID: Towards low latency and reliable DAG task scheduling over
dynamic vehicular clouds,” IEEE Trans. Veh. Technol., vol. 72, no. 9,
pp. 12 139–12 153, 2023.

[26] Q. Liu, Z. Tian, N. Wang, and Y. Lin, “DRL-based dependent task of-
floading with delay-energy tradeoff in medical image edge computing,”
Complex & Intelligent Systems, vol. 10, no. 3, pp. 3283–3304, 2024.

[27] C. Feng, P. Han, X. Zhang, Q. Zhang, Y. Liu, and L. Guo, “Dependency-
aware task reconfiguration and offloading in multi-access edge cloud
networks,” IEEE Trans. Mob. Comput., vol. 23, no. 10, pp. 9271–9288,
2024.

[28] H. Xiao, Z. Hu, X. Zhang, A. Xu, M. Zheng, and K. Li, “Federated
Deep Reinforcement Learning for Task Offloading in MEC-enabled
Heterogeneous Networks,” IEEE Internet Things J., 2024.

[29] H. Wu, A. Gu, and Y. Liang, “Federated Reinforcement Learning-
Empowered Task Offloading for Large Models in Vehicular Edge
Computing,” IEEE Trans. Veh. Technol., 2024.

[30] X. Zhao, Y. Wu, T. Zhao, F. Wang, and M. Li, “Federated deep rein-
forcement learning for task offloading and resource allocation in mobile
edge computing-assisted vehicular networks,” Journal of Network and
Computer Applications, vol. 229, p. 103941, 2024.

[31] H. Zhou, H. Wang, Z. Yu, G. Bin, M. Xiao, and J. Wu, “Federated
distributed deep reinforcement learning for recommendation-enabled
edge caching,” IIEEE Trans. Serv. Comput., 2024.

[32] S. Shen, G. Shen, Z. Dai, K. Zhang, X. Kong, and J. Li, “Asynchronous
Federated Deep Reinforcement Learning-Based Dependency Task Of-
floading for UAV-Assisted Vehicular Networks,” IEEE Internet Things
J., 2024.

[33] Z. Tong, J. Deng, J. Mei, Y. Zhang, and K. Li, “Multi-Objective DAG
Task Offloading in MEC Environment Based on Federated DQN With
Automated Hyperparameter Optimization,” IIEEE Trans. Serv. Comput.,
2024.

[34] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multitask
offloading strategy optimization based on directed acyclic graphs for
edge computing,” IEEE Internet Things J., vol. 9, no. 12, pp. 9367–
9378, 2021.

[35] Y. Chen, W. Gu, and K. Li, “Dynamic task offloading for internet
of things in mobile edge computing via deep reinforcement learning,”
International Journal of Communication Systems, p. e5154, 2022.

[36] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[38] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[39] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” Advances in neural information processing systems, vol. 33, pp.
7611–7623, 2020.

[40] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning. PMLR, 2020,
pp. 5132–5143.

[41] M. Al-Naday, V. Dobre, M. Reed, S. Toor, B. Volckaert, and F. De Turck,
“Federated deep Q-learning networks for service-based anomaly detec-
tion and classification in edge-to-cloud ecosystems,” Annals of Telecom-
munications, vol. 79, no. 3, pp. 165–178, 2024.

[42] B. Ouyang, J. Li, and X. Chen, “DDPG-FL: A Reinforcement Learning
Approach for Data Balancing in Federated Learning,” in China Confer-
ence on Networking. Springer, 2023, pp. 33–47.

[43] G. Nieto, I. de la Iglesia, U. López-Novoa, and C. Perfecto, “Deep
Reinforcement Learning-based Task Offloading in MEC for energy
and resource-constrained devices,” in 2023 IEEE International Mediter-
ranean Conference on Communications and Networking (MeditCom).
IEEE, 2023, pp. 127–132.

[44] H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, and G.-M. Muntean, “Edge
Intelligence: A Computational Task Offloading Scheme for Dependent
IoT Application,” IEEE Trans. on Wireless Communications, vol. 21,
no. 9, pp. 7222–7237, 2022.

	Introduction
	Related Work
	Traditional Centralized Methods
	Distributed DRL-based Approaches
	Federated Learning-enabled DRL Methods

	System Model
	Computation and Communication Model
	Local Execution Model
	Edge Server Execution Model

	Overall System Delay and Energy Consumption
	Problem Formulation

	Federated Learning-Enabled DRL Offloading & Resource allocation
	Markov Decision Process Formulation
	Local Training Phase
	Multi-head DQN for Discrete Offloading Decisions
	TD3 for Continuous Resource Allocation

	Global Aggregation and Model Fusion
	Convergence Analysis:

	Results and Discussion
	Conclusion
	References

