
Fragmentation-Aware VNF Placement: A Deep
Reinforcement Learning Approach

Ramy Mohamed ∗, Marios Avgeris ∗, Aris Leivadeas †, Ioannis Lambadaris ∗
∗ Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Email: ramy.mohamed@carleton.ca, mariosavgeris@cunet.carleton.ca, ioannis@sce.carleton.ca
† Department of Software and IT Engineering, École de technologie supérieure, Montreal, Canada

Email: aris.leivadeas@etsmtl.ca

Abstract—In this paper we address the challenge of efficiently
deploying Virtual Network Functions (VNFs) in network in-
frastructures. This is particularly crucial when facing resource
fragmentation, where available resources are not fully utilized
due to the fluctuating allocation and deallocation of virtual
network requests. Traditional optimization techniques often fall
short in managing the dynamic complexities of VNF placement.
To overcome this, we introduce a novel online VNF placement
strategy using Deep Reinforcement Learning (DRL) combined
with a Reward Constrained Policy Optimization (RCPO). This
method leverages the flexibility of DRL and the constraint
integration capacity of RCPO, ensuring compliance with per-
formance and resource limitations while minimizing resource
fragmentation. The results demonstrate that our DRL-based
method surpasses existing methods, resulting in more effective
resource management and less resource fragmentation.

Index Terms—Resource Fragmentation, Neural Combinatorial
Optimization, Reinforcement Learning, 5G, NFV, SFC, VNF
Placement

I. INTRODUCTION

Network Function Virtualization (NFV) transforms network
functions into software instances on virtualized infrastructures,
thus detaching them from specialized hardware. This con-
cept visualizes network services as Service Function Chains
(SFCs), comprising interconnected Virtual Network Functions
(VNFs) [1]. The VNFs are vertices in the SFC graph, while
the edges represent virtual links between them. Similarly,
the underlying Network Function Virtualization Infrastructure
(NFVI) is modeled as a graph with computing and forwarding
nodes as vertices and physical communication links as edges.
This creates the VNF Chain Placement Problem (VNF-CPP),
i.e., mapping SFCs onto the physical network while optimizing
costs and adhering to constraints [1] (Fig. 1).

VNF placement is inherently a complex and dynamic
task, challenged by fluctuating network conditions and ser-
vice demands, which deems traditional optimization methods
like Integer Linear Programming (ILP) unsuitable [2], [3].
Thus, recent research has turned to Machine Learning -based
techniques such as Deep Reinforcement Learning (DRL); for
instance, in [4], authors focused on optimizing the acceptance
ratio and minimizing the Age of Information (AoI) using DRL
[4]. Moreover, in [5], authors have presented a DRL-based
method for optimizing the power consumption of the VNF
Placement by extending the Neural Combinatorial Optimiza-
tion (NCO) theory and combining it with heuristics. NCO is

Network Infrastructure

VNF SFC

Physical Link Compute Node

VNF 1 VNF 2 VNF 3
Virtual Link

Fig. 1: The VNF Chain Placement Problem (VNF-CPP).

a machine learning approach that employs neural networks
to solve combinatorial optimization problems by learning a
representation of them. It is then used to make decisions or
predictions about the optimal solution [6].

In this study, we investigate the problem of resource
fragmentation, where the continuum of available infrastruc-
ture resources is used inefficiently because of unstrategic
SFC placements, thus reducing capacity or performance. We
introduce a novel online method for fragmentation-aware
VNF placement, utilizing a combination of DRL and Reward
Constrained Policy Optimization (RCPO) [7]. This technique
combines the strengths of DRL in forming optimal policies
within dynamic settings with the capabilities of RCPO in
integrating constraints potentially set by network operators.
The contribution of this paper is threefold: i) we develop
a novel approach for fragmentation-aware VNF placement
problem using DRL and RCPO; ii) we solve the fragmentation
problem by applying a novel DRL approach enhanced with a
RCPO, and iii) we provide insights into its scalability and
adaptability for real-world scenarios.

The rest of the paper is organized as follows: Section II
introduces Resource Fragmentation. Section III presents the
problem formulation. Section IV explains how the problem
is solved using DRL and RCPO. The experimental results
are presented in Section V. Finally, Section VI concludes the
paper.

II. RESOURCE FRAGMENTATION

The authors in [8] introduced the Resource Fragmentation
Degree (RFD) metric. This metric is designed to quantitatively

measure the status of resource fragmentation at substrate nodes
and links. RFD assesses how scattered or isolated resources are
in relation to their neighboring entities, either nodes or links.
To determine the RFD, the authors introduced two primary
concepts: i) the connectivity of substrate nodes and ii) the
connectivity of substrate links.

The connectivity of substrate nodes measures how con-
nected a node is based on the distance (in hops) to other
nodes, the residual resources (e.g., CPU capacity) available
at each of these nodes, and the bandwidth resources available
on the paths to these nodes. The following equation computes
connectivity κn

j for any given node nj in the network:

κn
j =

1

dτj

Ns∑
i̸=j

ρni ∗ ητij , (1)

where dτj is the number of nodes whose distance from node
nj is no longer than τ hops; Ns is the number of nodes in the
substrate network; ρni is the residual ratio of compute resources
capacity at ni (ratio between available to total resources) and
ητij is the residual ratio of bandwidth for the path between ni

and nj with no longer than τ hops (ratio between available to
total bandwidth).

Similarly, the connectivity of substrate links, measures the
connectivity of a link based on the number of adjacent links,
the residual bandwidth available on these adjacent links, and
the compute resources available at the nodes connected by
these links. The following equation computes connectivity κL

j

for any given link Lj in the network:

κL
j =

1

dLj

Ls∑
i ̸=j

ρLi ∗ ηnij , (2)

where dLj is the number of adjacent links to link Lj , where
adjacent links refer to links that have one common node with;
Ls is number of adjacent links in the substrate network; ρLi
is the residual ratio of bandwidth for the adjacent link Li and
ηnij is the residual ratio of compute resources capacity at the
common node between link Li and link Lj .

Both the RFD for nodes, rnj , and links, rLj , is then computed
as the complement of their respective connectivity:

rnj = 1− κn
j , (3)

rLj = 1− κL
j . (4)

In other words, it measures how disconnected or fragmented
a resource is. Naturally, higher RFD indicates a higher degree
of fragmentation in the substrate network.

III. FRAGMENTATION-AWARE VNF-CPP

In [9], we formulated the VNF-CPP problem as an Integer
Linear Programming (ILP) problem where the objective was
to minimize resource consumption while satisfying constraints
such as processing powers, bandwidth, and latency. To this
end, two binary decision variables were introduced; xsik

n that
was set to 1 if the VNF sik was allocated on server n ∈ N

and y
siks

i
k′

uv which was set to 1 if the virtual link between sik

Agent

Environment

Action
 At

State
St

Reward
Rt

Rt+1

St+1

Service and Network
Description Vector

Placement
Vector

Seq2Seq Model

DecoderEncoder

Input Sequence

VNF1 VNF2 VNF3

Output Sequence

Host1 Host1 Host2

Fragmentation Objective Function
9 set of constraints
Reward = Objective Cost + Constraint Violation

Fig. 2: The RL Agent Environment Interface.

and sik′ was routed over the physical link (u, v) ∈ L. Hence,
the following objective function was formulated:

min
x,y

|S|∑
i=1

(
∑

sik∈Si

∑
n∈N

Mnx
sik
n +

∑
sik∈Si

∑
si
k′∈Si

∑
(u,v)∈L

y
siks

i
k′

uv). (5)

The first term tried to minimize the number of utilized edge
servers by using the binary cost Mn. In particular, Mn was
equal to 1 if the server n was an edge server (n ∈ NE) and 0
otherwise.

We modify our previous VNF-CPP problem formulation to
include the RFD metric into our ILP objective function, to
better guide the placement decisions, targeting both efficient
resource utilization and minimum resource fragmentation:

min
x,y

|S|∑
i=1

(
∑

sik∈Si

∑
n∈N

Mnrnx
sik
n +

∑
sik∈Si

∑
si
k′∈Si

∑
(u,v)∈L

ruvy
siks

i
k′

uv).

(6)
where rn is node’s n RFD, given by Eq. (3), and ruv is
link’s uv RFD, given by Eq. (4). Including the RFD metric in
the objective function ensures that the solution will not only
minimize resource consumption and communication costs but
will also aim to distribute the VNFs in a manner that leads to
lower fragmentation of resources.

IV. ONLINE VNF PLACEMENT USING DRL AND RCPO

A. Constrained Markov Decision Process Formulation

Following, We model the problem as a Constrained Markov
Decision Process (CMDP). Fig. 2 illustrates the interfacing
between the RL agent and the environment. State St is a
vector that describes the requested SFC (m VNFs), including
the network state (e.g., available resources), and previously
allocated SFCs at time t . An action At is a placement vector
pSt = (p1, p2, ..., pm). It represents the decision made by the
DRL agent by specifying the placement of the SFC, i.e, the
compute nodes hosting the SFC’s VNFs. The environment
is where the agent’s actions get executed. It consists of the
ILP formulation of the VNF placement problem, incorporating
resource fragmentation of the problem. It also defines the
underlying network infrastructure. The reward is the signal

the agent receives after taking an action in the environment
and it combines the fragmentation objective function cost, and
the constraint violation penalty. The fragmentation objective
function cost is the ILP objective cost of the VNF placement
(Eq. 6). It relates to how fragmented the network resource
utilization is after the VNF placements. The constraint viola-
tion represents any violations of the predefined constraints (9
sets of constraints [9], [10]). The agent is implemented using a
Sequence-to-Sequence (Seq2Seq) neural network consisting of
an encoder and a decoder. Moreover, the Bahdanau attention
mechanism is used to improve the agent for tasks that in-
volve mapping input sequences (sequence of VNFs) to output
sequences (sequence of hosts) [11]. The underlying neural
network, denoted by its weights θ, infers a policy πθ(p

s | s)
that gives a placement strategy for all possible chains.

B. Solving the VNF placement problem using RCPO

The ultimate goal of the DRL agent is to learn a policy
π(θ), defined by the agent’s neural network parameters θ,
that minimizes the expected cumulative placement cost Jπ

F (θ)
and also minimizes the expected constraints violation penalty
Jπ
C(θ) over time while navigating the CMDP. The placement

cost is defined by the ILP objective function, whereas the
constraint violation penalty is defined for each constraint in
the problem formulation. As a result, the primal problem is
defined as follows:

min
π∼Π

Jπ
F (θ) s.t. Jπ

Ci
≤ 0,∀ci ∈ C. (7)

Then, the primal problem is transformed into an unconstrained
problem by utilizing the Lagrange relaxation technique, in
which the infeasible solutions yield a penalty:

g(λ) = min
θ

Jπ
L(λ, θ)= min

θ
[Jπ

F (θ) +
∑
i

λiJ
π
Ci
(θ)]

= min
θ

[Jπ
F (θ) + Jπ

ξ (θ, λ)],
(8)

where g(λ) is the Lagrange dual function; Jπ
L(λ, θ) is the

Lagrangian objective function; λi is the Lagrange multiplier
(penalty coefficient) for constraint ci and Jπ

ξ (θ, λ) is the
expected penalization. We solve the following Lagrange dual
problem to discover the penalty coefficients which create the
best lower bound:

max
λ

g(λ) = max
λ

min
θ

Jπ
L(λ, θ). (9)

We use the RCPO technique to update the Lagrange mul-
tipliers automatically. RCPO presents a Lagrange multiplier
for each constraint and a penalty term that motivates con-
straint fulfillment. It then uses a multi-timescale approach
that alternates between updating the policy using a policy
optimization method such as the Proximal Policy Optimization
(PPO) and updating the Lagrange multipliers based on the
constraint violations. This process is iteratively repeated until
convergence.

Accordingly, RCPO introduces a two-timescale method that
involves fast and slow timescales, i.e., θ is calculated by
solving Eq. (9) and updating it on the fast timescale, where

on the slower timescale, λ is expanded gradually until the
constraint violation vanishes. In this two-timescale approach,
the policy parameters are updated using a reinforcement learn-
ing algorithm to maximize the expected discounted reward. At
the same time, the Lagrange multipliers are updated using a
slower timescale to enforce the constraint. In order to compute
the weights θ that optimize Jπ

L(θ), we use the Monte-Carlo
Policy Gradients and the gradient descent:

θk+1 = θk + α∇θJ
π
L(θ). (10)

Policy gradient techniques select actions directly from an
initialized parameterized model and then adjust the model
weights so that the subsequent predictions achieve better-
expected returns. The log-likelihood approach [12] is then used
to compute the gradient of the Lagrangian:

∇θJ
π
L(θ) = E

p∼πθ(|s)
[L(p | s)∇θlogπθ(p | s)], (11)

where L(p | s) is computed by summing up the placement cost
and the sum of all the constrained violation penalties weighted
by the Lagrange multipliers:

L(p | s) = E(p | s) +
∑
i

λiCi(p | s). (12)

The gradient is then approximated with Monte-Carlo sampling,
as follows:

∇θJ
π
L(θ) ≈

1

B

B∑
j=1

A(pj | sj)∇θlogπθ(pj | sj), (13)

where B is the size of SFCs batch that need to be allocated.
A(pj | sj) = (L(pj | sj)− bθv (sj)) is called the advantage,
where b(s) is a baseline estimator [13]. The baseline is a
supporting model that estimates the placement cost plus the
penalty received by the agent while following the current
policy. This estimator helps reduce variance, accelerate con-
vergence, and improve sample efficiency. It is implemented
as an auxiliary sequence network that uses the weights θv
to parameterize the network. Moreover, it is trained using
gradient descent by minimizing the Mean Squared Error
(MSE) between its predicted value bθv (s) and L(p | s):

L(θv) =
1

B

B∑
j=1

||bθv (sj)− L(pj | sj)||2. (14)

The updated rules for the Lagrange multipliers are given by
[7]:

λk+1 = Γλ [λk − η1(k)∇λJ
π
L (λk, θk)] , (15)

∇λJ
π
L(λ, θ) = −

(
Eπθ
s∼µ[C(s)]

)
, (16)

where Γλ restricts the value of λ to the range between zero
and a maximum value, denoted as λmax, by projecting it into
this range. The algorithm defines the maximum value of λ and
ensures that the optimization process is well-behaved [7].

C. Agent training using DRL and RCPO

Algorithm 1 outlines the training process for the RL agent
to solve the VNF Placement problem using DRL and RCPO.
The input is a set of SFCs, S, used for training purposes
and the number of SFCs in each batch, B. The algorithm
initializes the policy parameters θ and θv with random weights
and sets the Lagrange multipliers λ equal to zero. Then, it
iterates through epochs k and performs the following steps
in each epoch: i) the gradients dθ ← 0 are reset; ii) for
each SFC in the batch, the SFC description sj , placement
solution pj , and baseline bj or the estimate, are sampled, and
then the Lagrangian cost L(pj | sj) is computed using Eq.
(12); iii) the gradient of the Lagrangian objective ∇θJ

π
L(θ)

using Eq. (13), and the Mean Squared Error (MSE) L(θv)
are computed using Eq. (14); iv) the policy parameters θ
and θν are updated using the Adam optimizer (slow learning
rate); v) the gradient of the Lagrangian is computed with
respect to the Lagrange multipliers ∇λL(λ, θ) using Eq. (16),
then the Lagrange multipliers λi are updated using Eq. (15)
(fast learning rate). After iterating through all the epochs, the
algorithm returns the updated policy parameters θ and θv .

Algorithm 1: Train Agent using DRL and RCPO

1 Input: SFC Learning Set S and SFC Batch B
2 Initialize: policy parameters θ and θv with random

weights, and Lagrange multipliers λ = 0
3 foreach epoch k = 0, 1, 2, . . . do
4 Reset gradients: dθ ← 0
5 foreach j ∈ {1, . . . , B} do
6 Sample input sj , solution pj , and baseline bj
7 Compute cost L (pj | sj) using Eq. (12)

8 Compute ∇θJ
π
L(θ) using Eq.(13)

9 Compute MSE L(θv), using Eq. (14)
10 Update θ and θν using Adam optimizer (Slow)
11 Compute ∇λL(λ, θ) using Eq. (16)
12 Update λi using Eq. (15) (Fast)

13 Return policy parameters θ and θv

D. MinFragRL Heuristic: Inference with Error Correction

Inference is the process by which an agent takes the knowl-
edge learned during training and uses it to make decisions
in its environment. The expected penalty when the agent
converges is close to zero but not equal to zero. Therefore,
theoretically, we should expect the agent to have very few
mistakes. To address this problem, we propose a heuristic that
complements the solution from the RL agent with an error
correction mechanism; this heuristic is named MinFragRL.

MinFragRL’s flowchart is illustrated in Fig. 3. First, a state
vector is created for the incoming SFC request. This state
vector represents the current network state and the require-
ments of the incoming SFC request in a format suitable for
the RL agent. The state vector is then passed to the RL
Agent. Using its learned policy, the RL agent produces a

Create State Vector for
Incoming Request Create Solution

RL Agent

Placement
Vector

Dijkstra's
Algorithm

Apply
 SolutionFeasible

Use solution as a
starting point for

Greedy

Yes

No

Feasible

Yes

Reject

No

Fig. 3: MinFragRL flowchart.

placement vector, which tells where to place each VNF of
the SFC requested. Then, the well-known Dijkstra’s algorithm
is used to find the shortest paths interconnecting the SFC’s
VNFs. Therefore, using the placement vector and Dijkstra’s
algorithm, an initial solution for the requested SFC is devised
based on the RL agent’s recommendation. Before applying the
solution, it undergoes a feasibility check. This step ensures
the proposed solution is viable and does not violate any
constraints.

If the solution is deemed feasible, it is applied straight away.
Otherwise, an error correction mechanism is triggered. The
initial infeasible solution is used as a starting point for a greedy
method. The greedy method tries to incrementally improve in
a step-by-step manner the infeasible solution to find a feasible
solution. For example, if one of the hosts chosen by the initial
solution cannot be used, the greedy method replaces this host
with the next available host. If no other hosts can be used,
then it fails to correct the error. The greedy method is fast
and simple, but it does not provide a guarantee to correct all
the errors in the initial infeasible solution. Therefore, another
feasibility check is then performed on the improved solution.
If the refined solution is feasible, it is applied. If it is still
not feasible after the error correction mechanism, the request
is rejected. The main idea of MinFragRL is to leverage the
strength of an RL agent to provide initial VNF placements
but with a backup plan.

V. RESULTS AND DISCUSSIONS

This section shows the evaluation results of using Min-
FragRL Heuristic. For this purpose, the RL agent is trained
to place 100 SFC requests and the training runs for 30,000
epochs. We used a homogeneous network consisting of 11
compute nodes, and 2 routing nodes interconnected using a
star topology (Fig. 4). To train the agent, we used a Google
Cloud Virtual Machine, which has a system RAM of 83.5 GB,
GPU A100 (40GB version) and 166.8 GB of storage. Training
time was 80 minutes on average.

Fig. 5 shows the costs incurred during the agent’s training
phase on the star network topology. We remind that the
fragmentation cost represents the fragmentation degree in
the network that results from the agent’s VNF placement
decisions. The better the VNF placement, the lower the
fragmentation degree. As we observe, minor fluctuations are
experienced during the initial epochs. After that, it steadily

o1

n6

n3

n9

n11

n8

n4

n2

n5

n7

n1 n10

q1

[100, 1μs]

[100, 1μs]
[10, 10, 1000]

Fig. 4: Overview of the star topology network.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
·104

Epoch(x1000)

C
os

t

Fragmentation
Baseline

Lagrangian
Penalty

Fig. 5: Costs during training.

decreases until it converges to its lowest value. On the other
hand, the baseline cost, the estimate of the fragmentation cost,
starts from a very low value and then rapidly increases until
it converges to a value close to the fragmentation cost. The
penalty cost, which represents the constraint violation cost,
sharply rises to its peak and then experiences a rapid decline
and plateaus at the convergence. Finally, the Lagrangian cost,
which is the sum of fragmentation and penalty costs, converges
to a value very close to the fragmentation cost.

Fig. 6 shows the values of the Lagrange multipliers during
the training for the start network, along with their average. In
this formulation, we identify nine types of constraints [9], [10].
Therefore, there are nine Lagrange multipliers whose values
are determined via training. The Lagrange multipliers values
rise to certain levels and stabilize at convergence, indicating
they have reached their optimal or desired values.

Going back to Fig. 5, we observe that after convergence, the
penalty cost oscillates slightly. This will result in placement
errors from the agent and that is why it is important to
complement the outcome of the RL agent with an error
correction mechanism to mitigate this phenomenon. Fig. 7
visually represents the placement error percentage in relation

0 5 10 15 20 25 30
0

10

20

30

40

Epoch(x1000)

L
am

bd
a

V
al

ue

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λavg

Fig. 6: Lambda values during training.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of SFCs

Pl
ac

em
en

t
E

rr
or

Pe
rc

en
ta

ge
(%

) Without Correction
With Correction

Fig. 7: Placement errors.

to the number of SFCs requested. The red line represents
placement errors without correction. The line starts at 0% error
when the number of SFCs is 0 or 50. As the number of SFCs
increases, so does the placement error percentage. By the time
there are 300 SFCs, the error is at 44%. On the other hand,
the green line signifies placement errors with correction. This
line starts with no errors for up to 100 SFCs. From this point,
the error increases slower than the without correction line. By
the time there are 300 SFCs, the error is at 31%.

The agent was trained to place up to 100 SFC requests, but
it failed to allocate all the 100 SFCs as it provided the wrong
placements for 5 SFCs out of 100. However, with the use of a
simple error correction mechanism suggested in our heuristic
MinFragRL, we can allocate all 100 SFCs correctly. We also
note here that the agent was trained to place 100 SFCs, but we
also tried to use it to place more than 100 SFCs, as indicated
in the graph. In this case, the agent uses only its knowledge
of placing up to 100 SFCs, and it is expected that we may
have more errors that cannot be corrected.

Fig. 8 compares our proposed heuristic against the ILP
method (Global Optimal), SeqSort [9], and VNE-RFD [8] in
terms of fragmentation cost, which is the objective cost of
Eq. 6, per number of SFCs. Fig. 9 compares these methods
in terms of success ratio against the number of SFCs to be

4 8 12 16 20 24 28
0

50

100

150

200

250

Number of SFCs

R
es

ou
rc

e
C

os
t

ILP
SeqSort

VNE-RFD
MinFragRL

Fig. 8: Resource cost per number of requested SFCs.

4 8 12 16 20 24 28

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of SFCs

A
llo

ca
tio

n
Su

cc
es

s
R

at
io

(×
10

0%
) ILP

SeqSort
VNE-RFD
MinFragRL

Fig. 9: Allocation success ratio per number of requested SFCs.

placed. SeqSort is a sequential heuristic that sorts all SFCs
and then allocates them individually. VNE-RFD is an online
placement algorithm that considers the RFD metric too. It is
important to consider both Fig. 8 and Fig. 9, as these two
figures complement each other. In Fig. 8, all methods show
an increase in cost as the number of requested SFCs grows.
The ILP and MinFragRL methods have identical costs for 4
and 8 SFCs but diverge for more. By looking at Fig. 9, we
can conclude that VNE-RFD fails to allocate all SFCs when
the number of SFCs exceeds 16 and SeqSort fails to allocate
all SFCs when the number of SFCs exceeds 20. Interestingly,
MinFragRL is the only heuristic in this comparison that was
able to allocate all the SFC requests the same as the global
optimal method, ILP.

VI. CONCLUSION

This paper presented a fragmentation-aware VNF place-
ment, utilizing a combination of DRL and Reward Constrained
Policy Optimization (RCPO), enabling adaptive learning of
Lagrange multipliers for constraint satisfaction. Our exper-
imental study showcased the method’s superiority in terms
of allocation success ratio, average placement cost, and con-
straint violation penalty compared to state-of-the-art methods.
The results confirmed that our approach presents improved

adaptability, resource efficiency, and constraint satisfaction
capabilities. As future work, we plan to extend the proposed
method to address more complex network scenarios and
constraints and explore further integrating other optimization
techniques to improve its performance. Additionally, another
promising direction could be investigating the potential of
transfer learning and meta-learning approaches to enhance
the DRL-RCPO framework’s ability to adapt to new network
environments.

REFERENCES

[1] T. Gao, X. Li, Y. Wu, W. Zou, S. Huang, M. Tornatore, and B. Mukher-
jee, “Cost-efficient vnf placement and scheduling in public cloud net-
works,” IEEE Transactions on Communications, vol. 68, no. 8, pp.
4946–4959, 2020.

[2] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf place-
ment optimization at the edge and cloud,” Future Internet, vol. 11, no. 3,
p. 69, 2019.

[3] D. Qi, S. Shen, and G. Wang, “Towards an efficient vnf placement in
network function virtualization,” Computer Communications, vol. 138,
pp. 81–89, 2019.

[4] Z. Chen, H. Li, K. Ota, and M. Dong, “Deep reinforcement learning for
aoi aware vnf placement in multiple source systems,” in GLOBECOM
2022-2022 IEEE Global Communications Conference. IEEE, 2022, pp.
2873–2878.

[5] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2019.

[6] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[7] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy
optimization,” arXiv preprint arXiv:1805.11074, 2018.

[8] H. Lu and F. Zhang, “Resource fragmentation-aware embedding in
dynamic network virtualization environments,” IEEE Transactions on
Network and Service Management, vol. 19, no. 2, pp. 936–948, 2022.

[9] R. Mohamed, A. Leivadeas, I. Lambadaris, T. Moris, and P. Djukic,
“Online and scalable virtual network functions chain placement for
emerging 5g networks,” in 2022 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom). IEEE,
2022, pp. 1–6.

[10] ——, “Fast resource allocation for virtual network functions chain
placement,” in 2022 International Telecommunications Conference (ITC-
Egypt). IEEE, 2022, pp. 1–6.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Reinforcement learning, pp. 5–
32, 1992.

[13] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

