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Abstract—Service Function Chaining (SFC), defines the capa-
bility of interconnecting a number of ordered Service Functions
(SFs) to create composite network services. A critical issue in SFC
is the autonomic fault recovery, i.e., bringing the system back to
its normal operation after a hardware or software failure. To
address this challenge, in this paper, we propose a novel dis-
tributed methodology that treats the SFC Self-Healing problem
in an Edge-Cloud infrastructure, while accounting for the various
stakeholders. In particular, the individual SFC healing decisions
are iteratively optimized and determined, while a Reinforcement
Learning (RL)-based SFC-to-datacenter association procedure
is realized. This process is complemented by a combinatorial
auction-based resource allocation mechanism that resolves the
potential SFC collocations at the end of each iteration. The proper
operation, effectiveness and efficiency of our proposed healing
mechanism is assessed under various evaluation scenarios.

Index Terms—Service Functions, Self-Healing, Edge/Cloud
Computing, Reinforcement Learning, Combinatorial Auction.

I. INTRODUCTION

With the emergence of 5G networks, the requirements for
high Quality of Service (QoS) and ubiquitous service availabil-
ity have become stricter. Together with the everlasting growth
in the number of interconnected applications and devices, this
has caused a paradigm shift in the network service delivery
to the end users; from network topologies being statically
deployed and tailored to specific services, to dynamically
composing network functions in network services. This flex-
ible and dynamic deployment model called Service Function
Chaining (SFC), essentially hands over the traffic of a service
to a predefined ordered list of chained Service Functions (SFs)
or Virtual Network Functions (VNFs) (e.g., load balancers and
firewalls) [1]. In this context, Software Defined Networking
(SDN) and Network Function Virtualization (NFV) are the
main technologies enabling the SFC deployment, configuration
and lifecycle management in a timely and cost efficient way.

However, network outages can still disrupt user experience.
According to [2], node failure probability could range be-
tween 60-99.8% with the increase in the network density and
complexity. That is why the design and realization of highly
robust and resilient systems in the 5G era calls for enhanced
physical and virtual infrastructure management. Specifically,
in the context of critical applications and everyday operations
that 5G promises to support, rapid network failure detection
and mitigation are of paramount importance, as most of the
potential failures cannot be predicted or identified in advance
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to allow proactive corrections. Therefore, Self-Organizing and
Self-Healing mechanisms are developed to meet such require-
ments, including intelligent monitoring, detection, diagnosis
and failure compensation capabilities [3].

A. Related Work & Motivation

Recently, several researchers have studied the problem of
SFC/NFV Self-Healing. In [3], the authors introduce SELF-
NET, a framework that enables autonomic network man-
agement functionalities and they focus on the Self-Healing
case of reactively or preventively dealing with the detected
or predicted network failures. A Self-Healing framework for
SFCs in 5G networks is discussed in [4] that ensures service
availability, by dynamically redeploying failed VNF instances.

The aforementioned works either provide architecture de-
scriptions or present practical solutions to the specific prob-
lem of SFC/NFV Self-Healing. However, when it comes to
mathematically formulating the problems of VNF deployment
and network Self-Healing individually, significant attention
has been drawn to utilizing Reinforcement Learning (RL)-
enabled techniques. Regarding the former problem, the authors
in [5] propose a Deep Reinforcement Learning (DRL)-based
solution to tackle the VNF placement problem, considering the
dynamic changes in the network load of a SDN/NFV-enabled
infrastructure. Specifically, they formulate the VNF placement
problem as a Binary Integer Programming model, aiming
to minimize a weighted cost consisting of the placement,
rejection and running sub-costs. On the other hand, in [6], end-
to-end service-level performance predictions are taken into
account to perform autonomous VNF placement. This makes
the proposed RL-based framework, more resilient to dynamic
network conditions and hardware heterogeneity.

Regarding network Self-Healing, the work in [7] proposes
a mechanism to deal with cell outages in 5G ultra dense
networks, while maximizing throughput and guaranteeing the
QoS demands for each user. The authors examine a DRL
solution to this NP-hard problem that utilizes K-means clus-
tering and deep neural networks. Almost the exact same DRL
concept is also applied in [8], though this time the focus is put
on cell outage compensation in massive [oT environments.

B. Contribution & Paper Organization

Despite the efforts made in the previous works, the issues
of accounting for various stakeholders in an Edge-Cloud



infrastructure (i.e., infrastructure providers and SFC vendors),
examining the dynamics among them and treating the healing
process in a decentralised way, still remain notably unexplored.
Especially in the context of 5G where services are expected to
respond in milliseconds, the rapid restoration of a system to
normal operation becomes a challenge. In this work, our goal
is to exactly deal with these issues, by proposing a distributed
Self-Healing mechanism where the various SFC vendors act
as independent agents formulating their healing strategy, while
the infrastructure provider aims at maximizing its monetary
gains. The key contribution of this paper is threefold:

o An Edge-Cloud infrastructure is considered, consisting of
interconnected datacenters and hosting multiple SFCs. To
enable the distributed and autonomous SFC Self-Healing
as a reactive response to a node outage, an RL-based
mechanism is introduced. During its online phase, each
SFC independently selects a node to heal to, aiming at
optimizing its benefit, while accounting for the service’s
computational, networking and QoS requirements.

o Datacenter resources are naturally limited. Thus, the
infrastructure provider opts for maximizing its revenue by
optimizing the allocated resources to the competing SFCs
in each node. For this, a monotone and truthful combina-
torial auction-based mechanism is integrated, where the
price paid by each SFC is calculated using a generalized
Vickrey-Clarke-Groves (VCG) scheme [9], [10].

o We propose a framework that combines the two afore-
mentioned mechanisms, where the SFC-to-node healing
associations are iteratively optimized. Detailed numerical
results, obtained via simulation, evaluate and demonstrate
the effectiveness and efficiency of the proposed work.

The rest of this paper is organized as follows. Section

Il presents the system model and the concepts of RL in
the Self-Healing problem. In Section III the revenue driven
resource allocation problem for each node is formulated and
solved. Section IV presents the performance evaluation of our
proposed framework and Section V concludes the paper.

II. SYSTEM MODEL

We consider an Edge-Cloud infrastructure comprising of
|N| interconnected nodes, N = {1, ...,|N|} being the respec-
tive set, that form a graph (Figs. 1, 2). In this infrastructure,
SFCs from various vendors consist of interconnected se-
quences of VNFs. The VNFs are deployed as Virtual Machines
(VMs) and the SFCs may span across different nodes. The
performance of an SFC depends on the individual perfor-
mances of the VNF instances in this chain. For example, if a
single VNF instance is faulty or overloaded, the whole chain
is affected and consequently all traffic is dropped. This work
examines the case where a single outage is experienced in one
of the infrastructure’s nodes and this affects |.S| SFCs; this may
result to |:S| VNFs needing to be relocated to functional nodes,
with S = {1,...,|S|} being the respective set.

A. Resource Allocation Auction Model

To consider a healing as successful, the SFC’s resource and
QoS requirements have to be met. To this end, each node
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Fig. 1: Initial state: VNFs of SFCs 1, 2 and 3, currently placed
in Edge node 6, need healing as the node is out of order.
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Fig. 2: Final state: VNF of SFC 1 has been redeployed to
Edge node 5 and the VNFs of SFC 2 and 3 to Cloud node 2.

n € N is characterized by a vector ¢,, = [c}, ..., cM] € R*M|
denoting its available resources. The dimensionality M repre-
sents the number of different kinds of resources considered
for the infrastructure nodes, e.g., if CPU, memory and
bandwidth are considered, then M = 3 and ¢, 2, ¢} stand
for node’s n available CPU, memory and bandwidth resources
respectively. Following this notation, each VNF s € S is
characterized by a vector ws = [wl, ..., wM] € R>M
denoting its required resources. Also, ds , € R is the QoS
metric representing the additional propagation delay induced
by relocating VNF s to node n. This metric is proportional
to the additional hops that are added to the SFC’s path. It
can be calculated by employing Dijkstra’s algorithm to find
the shortest paths which connect n to the nodes in which
the preceding and succeeding VNFs in the SFC sequence are
deployed (e.g., d22 = 1 in Fig. 2). The SFC’s maximum
tolerable additional propagation delay is defined as ¢s. Other
relocation-related delays (e.g., SFC initial configuration) are
considered similar between the nodes so we neglect them
from the decision making. A relocation of VNF s to node
n is described by z,, € {0,1} and is considered successful
when the resource requirements of VNF s are fulfilled, i.e.,
Tsn 1. Multiple SFCs may try to heal to a node, so
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we formulate the problem of determining the “winners”, i.e.,
the SFCs that successfully heal there, as a combinatorial
auction. This kind of modeling is suitable for an Edge-Cloud
environment, as SFCs’ demand is a bundle of computing and
networking resources and not individual items.

Let L, = {If,...,l[; |} € S be the discrete subset of
SFCs competing for node’s n finite resources, Vn € N. As an
example, in Fig. 2, for n = 2, we have Ly = {2, 3}, as SFCs 2
and 3 heal there. Subsequently, each node gets to decide which
of these competing SFCs will be accepted. Let j € L,, be the
index for the locally competing SFCs and r; be the bid value
that SFC j is willing to pay for the requested resources if it
is the winner, i.e. its budget. The objectives of our auction-
based problem are: (i) determine the set of winning SFCs and
(ii) calculate the payment p;, to be paid by each winning
SFC, such that: >, wiz;, < cp',Vm = 1,..,M and
0 < pjn < 1y, when z;, == 1, alternatively, p;, = 0,
when z;, == 0. In general, an auction tries to maximize the
sum of the bid values, since maximizing the total bid values
generates a high revenue P for the infrastructure, given that the
payment computation is truthful, i.e., the winners pay at most
their bid value and the losers pay nothing. Summarizing, the
winners determination problem can be modelled as a Multi-
dimensional 0-1 Knapsack problem (MKP) [11]:

I%l]ai( P = Z Tj.”l]j,n (]a)
’ JELR
s.t. Z wi'ri, < e’y Vm=1,.., M, (1b)
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where z;,, denotes whether the SFC j has been healed or not
to the examined node n, w;” are the SFC’s requirements and
c,! the node’s available resources. Note that MKP is a classic
combinatorial problem, therefore, the complexity of its brute
force solution is O(|L,| - 2/¥1), |L,| being the number of
SFCs competing for the same resources. Since the complexity
of this algorithm grows exponentially, it can only be used
for a very small number of competing SFCs. The procedure
described in Section III-A is followed to derive a tractable

solution which alleviates this restriction.

B. Stochastic Learning Automata (SLA)-based Node Selection

Towards enabling the distributed and autonomous SFC
healing, we consider that the SFC vendors act as Stochastic
Learning Automata (SLA) [12], by making autonomous deci-
sions regarding the node that they will be healed to, optimizing
their individual benefit [13]. Their respective decisions are led
by two factors: (i) the resource requirements of their respective
VNFs have to be met by the new node and (ii) they try to
minimize the additional induced delay. This is an iterative
process that takes turns with the auctioning procedure and
eventually converges to a favorable healing for each SFC.
More details on this follow in Section III. Consequently, each

SFC’s s benefit/reward from healing their VNF to a node n
at iteration k of the SLA healing algorithm is formulated as:

1
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where A, B,C € [0,1] are empirically selected coefficients
that satisfy the condition 0 < A+ B + C < 1 and assist
in fine-tuning and driving the solution towards a desirable
state. Zy,Z, € R* are gain coefficients which help bring
the respective terms of Eq. (2) close to 1 when d, ,, < ¢, and
Dsn < 75 and close to 0 otherwise. Based on the SLA theory,
the SFC’s probabilities of selecting the same or a different
node in the next iteration are updated as:
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Parameter 0 < b < 1 is the learning rate of the SLA algorithm
that controls the exploration of different healing alternatives;
the presence of b prevents inertia phenomena as well, where
an SFC would oscillate between decisions. For large values of
b, the SLA algorithm converges fast to a stable healing with
low accuracy in terms of optimality and vice-versa, accounting
for increased solution exploration versus exploitation. The
system converges to a stable solution when at least one state
probability is close to 1, for each s.

ITII. SELF-HEALING: WINNERS DETERMINATION AND
PAYMENT COMPUTATION

A. Reduction of the Winners Determination Problem

A specific case of MKP is the classical Single-dimensional
0-1 Knapsack problem (SKP), with m = 1, which is sub-
stantially less computationally intensive. Through the use
of Dynamic Programming, it can be solved in a pseudo-
polynomial time [14]. Therefore, in this section, we introduce
a procedure to reduce the dimensions of the MKP to one and
thus transform the original problem into an SKP (Algorithm
1). The basic idea behind the proposed procedure is to match
the requirements of the competing SFCs to predefined VM
instance sizes, or “flavors”, that are offered in each node. Let
each node advertise its F' available flavors, F' = {1,...,|F|}
being the respective set, as vectors u s € R™*M f ¢ F, which
denote the flavor’s offered resources in each dimension (i.e.,
CPU, memory and bandwidth). Each of these flavors has a
single-dimension weight, a scalar vy, which is defined by the
infrastructure provider. Then, the available capacity of each
node n and the reduced, single-dimensioned weights for each
SEC j, are also defined as scalars ¢, and w; respectively.

Note that two symbols are defined for operations between
vectors: i) a @ b returns the smallest element of the Hadamard
(or element-wise) integer division between the two vectors and
ii) a < b is a logical operator which is equal to 1 when all
the elements of a are less than or equal to the corresponding
elements of b. Finally, [a] is the ceiling operator for a scalar.
This procedure allows for formulating the SKP reduced winner



determination problem as follows:

max P= 3 1z (50)
J€Ln
st Y wiwia <, (5b)
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This reduced SKP can be solved optimally in pseudo-
polynomial time with a computational complexity equal to
O(|Ly,|-c},), by using the Bellman recursion [14]. Additionally,
the complexity of the algorithm transforming the MKP to an
SKP problem is equal to O(|L,,|- F'), thus the overall pseudo-
polynomial complexity of the resource allocation problem
becomes equal to O(|L,| - (F +¢},)).

Algorithm 1 Reducing MKP to SKP
Input: w37cn,uf,Vj € L, VfeF

Output w], c,,Vje Ly
I: ¢, < cp@uq /* uy; — “smallest” VM flavor */
2: for f € F do
3: if (cp, @ uy is 0) then vy > ¢, else vy «+ [, /(ch @
uy)]
4 for j€ L, do
5 if ((w; is unassigned) and (w; < uy)) then
6: w;- — vy
7 end for
8 if (w) is unassigned) then w’; > c],
9: end for

B. Combinatorial Auction for Resource Allocation (CA-RA)

To complete the combinatorial auction-based mechanism,
we wrap the winner determination problem with a payment
scheme (Algorithm 2); for that we use the generalized VCG
scheme. There, it is proven that if the winner determination
problem is solved optimally, then for a bidder, the payment
should be the sum of the declared bid values of other bidders
minus the sum of such values that would have been obtained
if the bidder had not participated in the auction. Therefore, the
payment p; of winning SFC j is defined as p; < P_;+r; —P,
where P_; is the optimal sum of bid values obtained from
Eq. (5), had SFC j not participated in the auction. A desired
property of a combinatorial auction mechanism is truthfulness
i.e., the bidders benefit the most when they reveal their true
valuations to the mechanism. Additionally, the winner deter-
mination algorithm needs to be monotone, i.e., a bidder only
increases its chance of getting its requested bundle by bidding
higher. A monotone allocation algorithm allows finding the
critical value of a winning bidder, which is the minimum they
need to bid to get their requested bundle.

Proof. To prove that CA-RA is monotone, we prove that for
any SFC j, if r; is a winning bid value, then every higher bid
value r > r; also wins, considering the other bids unchanged.
Indeed, 1f we assume by contradiction that r is not a winning
bid, and let CA-RA produce the winners sets with optimal
sum of bid values P and P’, respectively, then we must have

the case that P/ > P —r; + 7“3- > P. This means that CA-
RA should produce the winners set that correspond to P’,
which is a contradiction with the hypothesis. Thus, CA-RA is
a monotone algorithm. The proof of the truthfulness property

of the VCG payment scheme is detailed clearly in [10]. W

Algorithm 2 CA-RA Mechanism

Input: c,,up,Vf e F
Output: z;,p;Vj € L,
: for j€ L, do /* Bids Collection */
Collect bids (wj], ..., w},r;)
: end for
/* Winners Determination */
: Reduce the MKP to SKP using Algorithm 1.
: Solve the reduced resource allocation problem, (5).
for j € L, do /* Payments Computation */
if 2;, == 1 then /* for every “winner” */
P_; < optimal sum of bids if L, \ {j} in (5).
pj P,j +r;— P
end if
: end for
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C. Reinforcement Learning-based Self-Healing (RL-SH)

Summarizing, the proposed Self-Healing mechanism oper-
ates in two steps per iteration, as described in Algorithm 3:
(1) each SFC autonomously selects a node to heal to, based
on the probabilities of the SLA algorithm, Eq. (3), (4). (i)
A decision is made on which of these relocations can be
successfully performed, by reducing the MKP to SKP and
solving the combinatorial auction-based resource allocation
problem (Algorithm 2). The outcomes of this decision are fed
back to the SLA algorithm to update the rewards, Eq. (2), and
probabilities, Eq. (3), (4), for the next iteration.

Algorithm 3 RL-SH Mechanism
Input: ws,qs, cpn,up,Vs € S,Yne N,VfeF
Output: z; ,,,psn,ds Vs € S,¥n e N

1: k<« 0

2: while !converged do

3 for s € S do /* SFC-to-Node Association (L,,) */
4 Select a Node n to heal to, based on the

5: probabilities gzbknﬂ defined in Eq. (3), (4).

6 end for

7 /* Reward Calculation */

8 for n € N do

9: Determine the successful SFC relocations z ,,
10: and respective payments ps ,, using Algorithm 2.
11: end for

12: for s € S do

13: Calculate reward %!2 using Eq. (2).

14: /* Probabilities Calculation */

15: Update probabilities @S(kyf 2 using Eq. (3), (4).
16: end for

17: k<« k+1
18: end while




IV. NUMERICAL RESULTS

For the evaluation we consider a hybrid infrastructure,
consisting of NV interconnected Edge and Cloud nodes, where
the Cloud nodes have significantly more available resource
capacity, but are placed in greater distance than the Edge ones.
Regarding the resources, a 3-dimensional capacity is assumed
(M = 3), which corresponds to CPU, memory and bandwidth,
in [cores, GB,Gbps| respectively. For the Edge nodes, the
available capacity ¢, ranges from [2, 4, 1] to [24, 48, 10], while
for the Cloud nodes from [24, 48, 10] to [96,192, 40]. Three
VM flavors (F' = 3) are offered in each node, u1 = [2,4,0.5],
uz = [4,8,1] and ug = [8,16,2]. For the experiments that
follow, a single node is randomly placed out of order. The
SFCs have different lengths, QoS and resource demands, while
they are considered already deployed in the infrastructure
prior to the outage. The resource requirements ws of each
VNF range between [1,2,0.5] and [8,16,2]. Note that the
number of the deployed SFCs and the functional nodes remain
stationary throughout the simulation duration. The learning
rate is b = 0.6, unless otherwise explicitly stated.

First, we investigate the performance of the CA-RA mech-
anism. To this end, we assume that each SFC has an avail-
able budget 74 that scales with the SFC’s requirements and
defines its bids; thus, it is randomly selected in the range
[0.10 - w’, 0.30 - w’], w’, being the scalar SFC weight defined
in Section III-A. We then implement a simple Fixed-Price
payment algorithm, for which the payments computation part
of Algorithm 2 is replaced with the following: p; < G(wj})
if r; > G(w}) and p; < 0 otherwise, G(w’;) being the fixed
price that the node has defined for the VM flavor that matches
the resource requirements of SFC j (Algorithm I, line 6). We
consider and compare CA-RA with three different fixed-price
schemes: a sublinear one, where the fixed VM price grows
sublinearly with the VM flavor size, a linear one where the
growth is linear and a superlinear one with an exponential price
growth. For this comparison, 100 repetitions of the experiment
were executed with |N| = 35 nodes and |S| = 20 SFCs,
with fluctuating budgets in the given range and the results
where averaged. In Fig. 3, we see that the proposed mechanism
outperforms the others both in average successful healing ratio
and revenue collected by the nodes of the infrastructure, while
maintaining the average cost (price paid by each SFC) lower
than the rest. In detail, if we consider a linear fixed-price as
the baseline, changing to a sublinear pricing results to a higher
healing ratio but decreases the generated revenue, as SFCs
pay less than what they pay in the linear case. Naturally, the
opposite trend is observed for the superlinear pricing scheme.
All in all, by altering the fixed pricing scheme we can only
improve one healing aspect while sacrificing another. This
happens because the fixed-price schemes consider those SFCs
who bid at least the fixed value, while CA-RA determines
prices based on the market demand and supply.

Next, we evaluate the proper functioning of the RL-SH
iterative optimization process in whole. Here, a Monte Carlo
simulation over various infrastructure and SFC configurations
is performed. This simulation includes 100 repetitions for
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[l Fixed-Price Superlinear

Ratio [x100%]
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Fig. 3: CA-RA compared to different Fixed-Price schemes.

each scenario and the results are averaged and indicatively
presented in Fig. 4. In particular, in Fig. 4a, the conver-
gence behavior of the SLA algorithm is showcased, in an
infrastructure consisting of |N| = 15 nodes. For the first
iteration, the selection of the healing node for each SFC is
performed randomly, as their probabilities (@gln are equal,
Vs € S,Vn € N. We observe that the algorithm quickly learns
which placement maximizes the reward function for each SFC,
in approximately 50 SLA iterations. However, the bigger the
number |S| of SFCs that needs healing, the less the mean
reward achieved, as finding a solution that minimizes both
the cost and the additional delay while satisfying the resource
requirements for each SFC becomes more challenging.

Fig. 4b presents the successful healing ratio for |S| = 20
SFCs, per SLA iteration, for various sizes of the infrastructure.
Once again, the SLA algorithm quickly learns the most fitting
solution for each SFC, as from an initial 30-35% mean
success ratio we move to a 82-90% one, when the search
space is adequate for this setting (|N| > 35). Regarding the
performance and speed of convergence of the SLA-based Self-
Healing algorithm, the results of a brief analysis are presented
in Fig. 4¢c (|S] = 20, |N| = 35, fixed). The execution time
is calculated from the moment the node outage is detected
until a satisfying healing solution is found for every SFC.
Apparently, as the value of the learning rate b decreases, the
exploration of the possible SFC-to-node healing alternatives
becomes exhaustive. This results in increasing real execution
times, yet produces slightly higher mean rewards for the SFCs.

In the last part of the evaluation, we perform a comparison
of the SLA-based Self-Healing algorithm in whole, with three
baseline solutions: a randomly selected healing (“Random”),
a healing solution among the neighboring nodes of the out-
of-order node (“Distance”) and a healing solution among
the nodes with the most available resources (‘“Capacity”).
Once again, the results are averaged over 100 experiment
repetitions and presented in Fig. 5 (|S| = 20, |N| = 35,
fixed). Specifically, in Fig. 5a the dominance of the proposed
solution is demonstrated; the SLA-based algorithm scores
twice the healing success ratio of the compared solutions,
which mostly reside to healings that either satisfy the SFCs’
resource or QoS requirements. This ability of better satisfying
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Fig. 4: Overall performance of the RL-SH mechanism.

the budget, resource and QoS requirements is also reflected in
Fig. 5b, where the individual mean rewards gained per SFC
are illustrated, together with their average values.

V. CONCLUSION

In order to address the resilience concern of an Edge-
Cloud infrastructure, we proposed a RL-enabled, Self-Healing
mechanism, that recovers the SFC connectivity, in a seamless
manner in real time. The main idea, was to enable the auto-
matic recovery of SFC-based services in the face of failures,
while respecting their budget, resource and QoS requirements.
Thus, a distributed solution was proposed, where the service
vendors act autonomously and the infrastructure providers
sensibly allocate their available resources to maximize their
revenue, by offering them through combinatorial auctions. The
effectiveness of the proposed mechanism was evaluated under
various configurations. Future work will focus on investigating
and incorporating failure detection and diagnosis mechanisms
that would complement the proposed solution into a holistic
network resiliency framework. Additionally, we will look into
ways of implementing the auctioning mechanism in a realistic
way for an Edge-Cloud, SFC-enabled infrastructure.
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