
Research Project 2

Design and Integration of a Smart
Orchestrator for 6G Services

January 23, 2026

Students:
Muhammad Mansour
15294234

Tomás E. Agata
15767647

Supervisor:
Marios Avgeris

Course:
Research Project 2

Course code:
53842REP6Y

Abstract

6G networks demand ultra-low latency and high reliability requiring advanced orchestration
frameworks over application and network infrastructure. This project presents a hierarchical
orchestration framework integrating Oakestra[1], an open-source edge application orchestrator,
with the Infrastructure Management Layer (IML), a network function orchestrator from the DE-
SIRE6G project[2]. The integrated architecture extends Oakestra’s deployment capabilities to
enable unified orchestration of application microservices and network services. Through hierar-
chical delegation, Oakestra handles service deployment while delegating network function deploy-
ment to IML, thus bridging the gap between application-level and network-level orchestration.

We demonstrate the proposed orchestrator through an experimental deployment of two mi-
croservices connected via an NFRouter (network function router) deployed on-demand by IML.
This demonstration shows automated, service-aware network deployment, which satisfies 6G
performance requirements. The key contribution is a unified orchestration approach based on
NSDs and hierarchical delegation to orchestrate application and network services in an end-to-
end manner, ensuring low-latency and reliable service delivery as required in 6G[3].

1 Introduction

Modern 5G networks have significantly improved mobile connectivity, but emerging applications
such as smart transportation systems, remote robotic surgery, and industrial automation require
near-zero latency and ultra-high reliability, exceeding current capabilities. The transition to 6G
networks aims at reaching these objectives, including hyper-reliable, ultra-low latency, and large-
scale communication[3].

Realizing this vision involves great enhancements in the management and deployment of
distributed services, requiring existing network architectures to evolve and scale effectively with
minimal human intervention. Specifically, moving from centralized 5G deployments to the dis-
tributed, multi-site architecture anticipated in 6G presents difficult scalability issues [4]. Tradi-
tionally, the easiest way to support more applications on a single server is to buy a bigger server;
this is called vertical scaling. But still there are only so many applications a single server can
support, therefore if further scaling is desired a switch to horizontal scaling must be made: in-
stead of buying bigger and better servers, multiple smaller servers can be used that distribute
the load between them. By grouping servers together we obtain a cluster or site. Operating ap-

7227 words page 1 of 17



Report
Research Project 2

plications across many sites is far more complex than in a single cluster, as it must maintain
consistency and reliability across many different resources [5].

Managing service deployment in distributed infrastructures is complex due to the diverse
and dynamic nature of the environment, that becomes more complicated as the system scales.
Moreover, when managing multiple sites at the same time, determining the best location for an
application involves figuring out the best clusters for the task, ensuring compliance with local
data regulations, orchestrating the application deployment in each of the clusters, and configur-
ing the networking components -such as DNS or firewalls- required to allow multi-site communi-
cations. This would not be much of a problem if no errors were to arise, however, nowadays ser-
vice level agreements (SLAs) require that an application is able to withstand failures and achieve
almost to no downtime. As a result, the process of multi-site deployments must lean towards full
automation [1].

Another major challenge lies in automatically configuring the network for deployed applica-
tions by seamlessly creating, modifying, and removing network service chains with zero or near-
zero latency. When applications extend across several clusters, the network must be dynamically
reconfigured (e.g. routing, DNS, firewalls, compression proxies) to connect service components
across sites. Traditional static network configurations are insufficient, instead, the concept of
Network Service Descriptors (NSDs) from the NFV (Network Function Virtualization) domain
offers a way to describe end-to-end network service chains that meet an application’s specific
needs, and NSDs also specify the dependencies between the application and the underlying net-
work. By decoupling the application logic from the underlying network setup, NSDs allow an
orchestrator to customize the network based on each application’s requirements. This decoupling
is critical for the flexibility and adaptability demanded by 6G scenarios [6].

The main purpose of this research project is to try our hands at addressing these challenges
by designing and developing an orchestrator that is able to seamlessly integrate application and
network service chain deployments into one single unified platform. Building on Oakestra (an
open-source hierarchical orchestrator[1]), we propose to extend its architecture with an addi-
tional module for network service orchestration called Infrastructure Management Layer (IML)
module[2]. The IML will receive high-level network service descriptors from the Root Orches-
trator and deploy it on worker nodes. By automating the deployment of both application com-
ponents and the necessary network functions, the system aims to enable scalable, low-latency,
and reliable service deployments across multiple sites, which is in line with 6G programmability
requirements.

2 Connection to Previous Work

Our first research project (RP1) investigated heavy-hitter detection algorithms (Count Min,
Bloom Filter, PRECISION) on programmable switches and produced a reusable benchmark-
ing testbed with virtual P4 switches (BMv2). This previous work established a foundation for
understanding and implementing heavy-hitter detection in the network data plane. While RP1
focused on data plane mechanisms for detecting heavy hitters, the current project builds on
those results by moving up a layer to the control plane. In this project, we explore control-plane
automation that would allow deploying such algorithms as part of a larger service chain. The
Heavy-Hitter module from the first project could be deployed as an infrastructure network func-
tion that would be used to export real-time traffic statistics to the new orchestrator. Using these
statistics, the orchestrator can react automatically by scaling out new application micro-services
or replicas, or adding extra network functions, such as compression, and steering Heavy-Hitter
flows through them. The project delivers a prototype multi-site orchestrator that intelligently
manages both application containers and network services, improving automation in edge com-
puting environments.

3 Research questions

This research is guided by the following key questions:

Muhammad Mansour, Tomás E. Agata page 2 of 17



Report
Research Project 2

• How can we design a hierarchical, distributed orchestration system to support scalable,
low-latency, and reliable service deployments across multiple sites?

• What architecture is suitable for integrating network service orchestration into a hierarchi-
cal multi-site orchestrator without disrupting the normal application deployment flow?

• In what ways can network service descriptions (NSDs) be used to improve flexibility and
adaptability in application-to-network integration? How the orchestrator can interpret an
NSD to deploy virtual network functions (routers, firewalls, etc.) across sites and dynami-
cally reconfigure networking between application components?

4 Related Work

The growth of edge computing has increased the number of studies of orchestrators capable of
managing both cloud and edge resources. A service orchestrator allows developers to specify an
application’s requirements (resources, placement constraints, etc.), and the system automatically
handles the low-level deployment and management details. Kubernetes is a leading example, an
open-source container orchestration platform originally designed for datacenter clusters. Kuber-
netes has become the most popular orchestration system for cloud container management (used
in production by ≈59% of large organizations). However, Kubernetes assumes a single cluster
with reliable high-bandwidth connectivity between nodes, which is an assumption that has limi-
tation in in geo-distributed and edge environments. All resources must be located in one cluster
and be directly reachable, meaning Kubernetes cannot easily coordinate multiple independent
clusters. KubeFed (Kubernetes Federation), K3s, KubeEdge, and MicroK8s are variants and ex-
tensions developed to make Kubernetes more lightweight or to federate multiple clusters. How-
ever, these solutions still inherit many assumptions of the original Kubernetes design and they
showed limitations at edge environment [1]. Early efforts to extend orchestration to the edge in-
clude platforms such as FocusStack and ParaDrop and to overcome Kubernetes’ limitations for
multi-site deployments, researchers have explored hierarchal orchestration frameworks such as
Oakestra.

Amento et al., 2016 [7] introduced FocusStack, an orchestration approach that allows the
focus of attention of the cloud control plane to be based on the location, health, and capabilities
of the edge device to decide where to deploy services. As a result, it incorporates the client into
scheduling. At the same time, Liu et al., 2016 [8] explored ParaDrop, a lightweight edge com-
puting platform on WiFi routers, that uses computing and storage resources at the edge of the
network (access points) to allow third-party developers to flexibly create new types of service.
ParaDrop framework enables the deployment of various third-party applications on the Access
Point, allowing support for various end devices, such as wireless cameras and environmental sen-
sors. These systems established the need for decentralized orchestration but were often limited
to specific scenarios and did not offer a general multi-site hierarchy.

Oakestra, proposed by Bartolomeo et al.[1], is a recent study that employs hierarchical or-
chestration frameworks to effectively manage resources from cloud to edge. Oakestra offers a
two-tier orchestration model, Root Orchestrator and Cluster Orchestrator. The Root Orchestra-
tor performs top-level scheduling by selecting suitable clusters for an application’s microservices
based on high-level constraints (latency, hardware, policies, etc.), while each Cluster Orchestra-
tor then places those microservices to suitable worker nodes within its local cluster. Oakestra
also introduces an overlay network with built-in tunneling to allow application components on
different clusters to communicate with minimal developer intervention. Oakestra outperforms
traditional orchestration frameworks (including standalone Kubernetes and its lightweight vari-
ants), and achieves lower CPU and memory overhead and faster deployment times. The hier-
archical delegation of Oakestra accelerates scheduling and more effectively supports the unified
cloud-edge framework, where different clusters might be operated by different providers but col-
laborate to host a service. We plan to utilize Oakestra’s open-source and extend it with new ca-
pabilities for network service management.

Besides compute orchestration, the networking community has developed frameworks for or-
chestrating virtual network functions (VNFs) and network services. The ETSI NFV (Network

Muhammad Mansour, Tomás E. Agata page 3 of 17



Report
Research Project 2

Function Virtualization) architecture defines a Management and Orchestration (MANO) layer
which is responsible for managing VNFs and chaining them into full network services [9]. NFV
MANO has an important concept called Network Service Descriptor (NSD), which is a specifica-
tion of an end-to-end network service, including its VNFs and their interconnections [10]. Many
open-source projects implement these ideas such as ETSI Open Source MANO (OSM) which
is an orchestrator aligned with the ETSI NFV standards [11]. OSM offers a platform for the
deployment of network services over multiple edge sites, and allows operators to provide VNF
descriptors and NSDs, then automates the setup of the required virtual machines/containers
and network connectivity across available infrastructure. By using NSDs, an orchestrator such
as OSM can dynamically compose network services on-demand, instead of depending on static
network configurations. For instance, automatically setting up a chain of a traffic load-balancer
and a firewall between two microservices hosted on different clusters [11]. There has also been
research on combining NFV network service orchestration with edge computing. For example,
projects such as SONATA and ETSI MEC attempt to integrate service function chaining with
edge application placement, even though most existing solutions consider network orchestration
and application orchestration as separate domains [12] [13].

Deliverable D2.2 of the Horizon-Europe DESIRE6G project [2] defines a service-oriented 6G
architecture. It couples a fully-programmable user-plane extending from the RAN to the core,
a cluster-level Infrastructure Management Layer (IML) that abstracts the diversity of CPUs,
SmartNICs, and FPGAs, and a set of AI control loops that modify resources to keep the sys-
tem zero-touch. Our work intersects with this idea by integrating network-service orchestration
into the general computing orchestration domain. Instead of initiating an application and then
calling a separate MANO stack to configure the network, we ask the Oakestra orchestrator to
generate the required network functions as part of the same deployment phase. This is done in
this study by extending Oakestra with its own IML, which is adjusted to be suitable. In our
work, the IML plays a role similarly to an NFV Orchestrator, but specialized for cluster-level
and integrated with the application orchestrator. The 5G-PPP 5G-INDUCE project [14] has al-
ready shown that this combination is practical: its three-layer platform (Application Orchestra-
tor, OSS/BSS and NFV-O) enable developers to request network capabilities through one API
while separating them from the details of the infrastructure. This approach - where developers
can simply state latency or bandwidth goals and let automation delver them- is now widely rec-
ognized as a fundamental component for 6G.

In light of all the above, our work stands at the intersection of distributed systems (multi-
cluster orchestration) and network systems (NFV orchestration). Existing technologies provide
building blocks: Kubernetes for container management, OSM for NFV management, Oakestra
for hierarchical edge orchestration, and IML for Network services management. However, the in-
tegration of these elements into a coherent, developer-friendly platform is still an open research
problem. Our contribution will be to design and prototype such an integrated orchestrator that
will be a key element of the 6G era of distributed services and its requirements including scala-
bility, low latency, reliability, and flexibility.

5 Methodology

To address the research questions, we followed a methodology combining design analysis, pro-
totype development, and iterative testing. We began by studying Oakestra’s open-source code
and documentation [1] to understand its hierarchical orchestration flow. This involved reviewing
Oakestra’s architecture (Root Orchestrator, Cluster Orchestrators, Worker Nodes), how clusters
register with the root, how tasks are scheduled, and how it handles application deployment re-
quests. In parallel, we examined the Infrastructure Management Layer (IML) concept from the
DESIRE6G project’s Deliverable D2.2 [2], treating it as our candidate solution for network ser-
vice orchestration. The IML specification was analyzed to determine how it abstracts diverse
data-plane resources and manages virtual network functions (VNFs) through Network Service
Descriptors (NSDs).

Based on this background, we formulated possible integration methods. One design scenario
was to write a custom network orchestration module from scratch to integrate with Oakestra.

Muhammad Mansour, Tomás E. Agata page 4 of 17



Report
Research Project 2

However, developing a custom solution carried the danger of duplicating existing NFV orchestra-
tion concepts and would require significant effort to reach feature equivalence with known frame-
works. The selected alternative approach was to leverage the existing IML framework from DE-
SIRE6G [2] by modifying and integrating it with Oakestra [1]. This reuse offered the potential
for alignment with state-of-the-art 6G research, given IML’s design that already aimed at man-
aging VNFs. We decided that extending Oakestra with IML would best meet the project goals
of unifying application and network orchestration.

After selecting the integration approach, we proceeded with system design and prototyp-
ing. We first extended Oakestra’s deployment descriptor schema to include an NSD section (de-
tailing required network functions and their connectivity). This extension was guided by NFV
standards. For example, NFV’s NSD concept provides a template to describe an end-to-end net-
work service chain [15]. By using this format, we ensured our design could dynamically compose
network services alongside application deployments. Next, we modified Oakestra’s Root Orches-
trator code to parse the extended descriptor and split the deployment plan into two parts: (1)
the application components (microservices) to be handled by Oakestra’s normal workflow, and
(2) the network service requirements (the NSD) to be passed to the IML module.

On the IML side, we adapted the available IML prototype to function as an embedded net-
work orchestrator within our platform. This involved writing new interfaces for the Root Or-
chestrator to transfer the NSD to the IML, and modifying the IML code so that it can accept
any application identifiers and connection requirements without needing prior definitions of each
application in its code. We instructed IML to interpret the high-level connectivity specifica-
tion (who needs to be connected to who, with what constraints) and dynamically deploy the
required infrastructure network functions. During development, we followed best practices of
modular design: Oakestra’s existing components (System Manager, Root Scheduler) were min-
imally changed, and the IML integration was added as a new module to keep the stability of the
core orchestrator.

Finally, we established a test environment to validate the integrated orchestrator. We used
instances of Oakestra’s Root and Cluster Orchestrators, along with an IML agent running in the
cluster. More information about the implementation is in the deployment demonstration section.
This iterative methodology (analyze, design, implement, then test) allowed us to enhance the
integration and ensure that the research questions were answered by the final prototype.

6 Design

6.1 Oakestra

We built our solution on Oakestra’s hierarchical orchestration framework [1], as shown in Fig-
ure 1. In standard Oakestra without IML integration, a centralized Root Orchestrator manages
the global view of the infrastructure, handling user requests to deploy applications across edge
sites. It maintains a registry of clusters and their aggregated resources (CPU, memory, etc.) re-
ported by each Cluster Orchestrator. When a user sends an application deployment request (via
a Deployment Descriptor), the Root Orchestrator’s Service Manager records the request and
calls the Root Scheduler. The Root Scheduler filters and ranks clusters based on the require-
ments (latency constraints, hardware needs, etc.) using the summary statistics provided by clus-
ters. After selecting the best cluster for a given microservice, the Root Orchestrator assign the
deployment to that cluster’s orchestrator. Each Cluster Orchestrator serves as the localized con-
trol plane for its site. The cluster orchestrator’s scheduler does placement of the microservice on
one of the available Worker Nodes in its cluster, based on real-time node capacities. The chosen
worker then pulls the required container image and launches the microservice. Oakestra’s design
emphasizes delegated scheduling by dividing the scheduling problem between global (cluster se-
lection) and local (node selection) levels. Another key feature of Oakestra is its overlay network-
ing: each worker’s network stack cooperates to provide unified connectivity between microser-
vices even across clusters. Oakestra uses a semantic addressing and tunneling so that services
can reach each other by their service IDs regardless of their physical location [1]. This allows
Oakestra to abstract the network complexities from developers and it is a starting point for our
6G orchestration platform.

Muhammad Mansour, Tomás E. Agata page 5 of 17



Report
Research Project 2

Figure 1: High-level architecture of Oakestra. Adapted from [16]

There is however, certain changes that needed to be reworked on the way that Oakestra
works. Oakestra is built to directly manage deployments by connecting to the underlying con-
tainer engines. However, in order to allow both applications and network service deployments,
we needed a orchestration engine that could provide a common API to allow both types of de-
ployments to coexist at the same time while preventing resource competition. As a result of this,
we decided to utilize Kubernetes as the underlying orchestration engine. We chose Kubernetes
because it is one of the most popular and battle-tested orchestration engines, and also because
the Oakestra team provides one plugin that allows modeling all of Oakestra’s cluster components
as Kubernetes resources, which heavily facilitates the development process. Additionally, by only
limiting the reach of Kubernetes to a single cluster, this heavily reduces the impact of the one
requirement that Kubernetes requires: high-speed links between nodes.

6.2 Infrastructure Management Layer

In the DESIRE6G architecture [2], the IML is introduced as a specialized layer to manage pro-
grammable data-plane resources in a unified way. IML acts as a combination of a Virtual Infras-
tructure Manager (VIM) and a hardware abstraction layer. Its responsibility is to bridge the gap
between the logical network functions that higher-layer want to deploy and the physical infras-
tructure (CPUs, SmartNICs, FPGAs, P4 switches, etc.) that actually process packets. For ex-
ample, if a network service requires a firewall or router function, IML can decide whether to run
that function in software on a CPU core, or on a programmable switch ASIC, or on a SmartNIC,
depending on resource availability and performance needs [2]. At deployment time, IML also sets
up virtual links between the deployed functions to ensure that all microservice components and
VNFs in a service chain are connected in the data plane. The DESIRE6G IML design includes
an embedded local NFV Orchestrator (NFVO) at each site. This local NFVO utilize a site net-
work service description (NSD) and performs tasks like: selecting suitable hosts for each net-
work function, initiating VNF instances (e.g. launching a container), and connecting the VNFs
with each other. This distributed NFVO model enhances the hierarchical structure of Oakestra,
as each site can independently handle its network functions under the policies set by a central
controller. The IML is also designed to enable advanced features such as seamless scaling and
heavy-hitter flow management [2]. For instance, it supports dynamic load balancing and can off-
load elephant flows to hardware accelerators. These capabilities align with 6G goals of high per-
formance and zero-touch automation as the network can reconfigure itself in reaction to traffic
conditions[17].

6.3 Unified Architecture

As shown in Figure 2, our Smart Orchestrator for 6G integrates Oakestra’s hierarchical orches-
tration with IML’s network service orchestration capabilities into a unified system. The overall
design is a three-tier hierarchy with the following roles:

Muhammad Mansour, Tomás E. Agata page 6 of 17



Report
Research Project 2

Figure 2: Unified Architecture of our Smart Orchestrator

• Root Orchestrator (RO): The global entry point that receives deployment requests. In our
design, the RO now handles both aspects of a deployment:

– the application components (microservices), and

– the required network service chain.

We extended the deployment descriptor to contain a section for network service require-
ments in addition to the applications section. When a request comes in, the RO uses its
Service Manager to log the request and then invokes two parallel workflows. The first work-
flow is the standard Oakestra scheduling: determine which cluster will host each microser-
vice (based on SLA and resources) using the Root Scheduler, and then forward each mi-
croservice specification to the corresponding Cluster Orchestrator [1]. The new second
workflow is that the RO passes the network service descriptor to the IML layer. This means
that the RO produces a local NSD file for the target site or cluster. If all microservices
of the application are placed in a single cluster, the RO generate one NSD targeting that
cluster’s IML. If the application spans multiple clusters, the RO can generate a sub-NSD
for each site’s IML (describing the part of the service chain that runs locally). The RO
then triggers each cluster’s IML to handle the network setup. This design makes the RO
an orchestrator of orchestrators: it coordinates the cluster orchestrators for computing and
the IML for networking, ensuring both deployments happen simultaneously. This approach
does not require the RO to manage low-level network configurations.[18]

• Cluster Orchestrator (CO): This component is part of every cluster to manage its workers
and application containers. We kept the CO largely unchanged from Oakestra for deploy-
ing microservices; we only introduced a communication mechanism between the Worker
nodes and the local IML to support runtime coordination. This mechanism works as fol-
lows: after the CO schedules and launches the application’s microservices on its workers,
a special application inside each worker node informs the IML about the deployed applica-
tions. This special application consists of a Container Network Interface or CNI. This CNI
is a common architectural pattern in Kubernetes that is usually tasked with setting up the
network interfaces of a newly deployed container. However, this version of the CNI is also
tasked with registering itself to the IML; the IML, in turn, answers back with the neces-
sary network details required to set up the interfaces. This addition is absolutely neces-
sary because the IML needs to know where each microservice is running and how to man-
age or route traffic to/from it. This allows the IML to dynamically integrate new network

Muhammad Mansour, Tomás E. Agata page 7 of 17



Report
Research Project 2

functions among microservices. The cluster orchestrator continues to perform monitoring
and local scaling decisions for applications, while leaving specific network logic to the IML.
This flexibility allows our integrated design to maintain the independence of clusters. If the
Root Orchestrator is unreachable, a cluster could continue operating and adjusting its own
microservice placement, and the IML at that site could continue managing local network
optimizations.[19]

• Infrastructure Management Layer Agent : The IML agent includes the local NFVO func-
tionality from DESIRE6G’s design [2]. When it receives a network service descriptor from
the Root Orchestrator, it parses it to know the list of virtual links and required VNFs
and decides how to realize it on the local infrastructure. In our current implementation,
the IML agent uses a simple strategy: for each required network function (in our test, a
Network Function Router or NFRouter), launch it as a container on one of the available
worker nodes, and then configure the routing rules based on the descriptor. Because our
testbed did not include special hardware such as SmartNICs, the IML in this phase treated
all VNFs as containerized software functions. The IML agent utilizes the assigned network
information to microservices to configure the NFRouter’s forwarding table. For instance,
if the descriptor specifies that microservice A and microservice B should be linked through
a router, the IML will create an NFRouter and add rules so that packets from A are for-
warded to B (and vice versa) through the router. This is similar to establishing a service
function chaining (SFC) path as described by the NSD. In our design, once the NFRouter
(or any network function) is running, the IML monitors it just as the CO monitors appli-
cation containers. The IML regularly reports status back to the Root Orchestrator (e.g., to
log that the network service has been deployed and is healty).[20]

This flexible integration method kept Oakestra and IML as separate modules that exchange
information, which made implementation easier and preserved modularity. An alternative, but
more advanced approach could come from merging the cluster orchestrator and IML functionali-
ties more deeply. In our design, we chose the modular method as this solution retains all existing
functionality while preserving independence between the components.

Finally, our integrated orchestrator design supports the idea of developers using a single
API to deploy everything. The developer simply submits a deployment descriptor containing
both application requirements and a high-level network service specification while the orches-
trator manages the internal complexity of scheduling, placement, and chaining. By using NSDs
to represent network requirements, we ensure that adding a new network function (e.g., a fire-
wall between two microservices) does not require manual network configuration. Instead, the or-
chestrator understands that descriptor and automates the necessary steps. This approach aligns
with 6G management mechanism that emphasize intent-based requests and closed-loop automa-
tion.[17].

7 Deployment Demonstration

To validate the smart orchestrator, we implemented a proof-of-concept deployment including a
simple application and a network service function inserted between its components. This sce-
nario describes a common use case: Two microservices, MongoDB and NGINX must be able to
communicate with each other using a network service containing a router in the middle. This
demonstration is intended act as a base case that simulates a client-server application, with some
network functionality in the middle. The entire deployment process consists of a series of three
distinct stages or steps:

• User submits specification to the Root Orchestrator

• Cluster Orchestrator deploys microservices

• IML deploys the network service

Muhammad Mansour, Tomás E. Agata page 8 of 17



Report
Research Project 2

7.1 User submits application specification to Root Orchestrator

The first phase of deployment starts with a user passing a specification of the desired applica-
tions and services in the form of a deployment descriptor to the RO. We defined the deployment
using the new descriptor format that our orchestrator supports. In JSON form, the descriptor
contains an applications array and a net services array. Each application entry lists its mi-
croservices and resource requirements, and each network service entry describes a forwarding
graph. Listing 1 is an illustrative snippet of the descriptor used in the test. In this descriptor,
each microservice has an ns ref tag (like app a or app b) that is referenced by the network
service definition. The net services section describes a forwarding graph named test1. This
graph contains two directed links: to dst connecting the source (app a instance 1) to the des-
tination (app b instance 1), and to src for the opposite direction. This specifies that traffic be-
tween the two microservices should flow through a network service chain. The orchestrator in-
terprets this as a requirement to deploy a service function (in this case, an NFRouter) that will
handle traffic in both directions. The e2e delay budget property indicates the application’s tol-
erance for network delay.

1 { "sla_version" : "D6G",

2 "customerID" : "Admin",

3 "applications" : [

4 {

5 "applicationID" : "",

6 "application_name" : "nstest",

7 "application_namespace" : "default",

8 "application_desc" : "ns test",

9 "microservices" : [

10 {

11 "microserviceID": "",

12 "microservice_name": "src",

13 "microservice_namespace": "default",

14 "virtualization": "container",

15 "vcpu": 1,

16 "storage": 100,

17 "code": "docker.io/library/busybox",

18 "ns_ref": "app_a"

19 },

20 {

21 "microserviceID": "",

22 "microservice_name": "dst",

23 "microservice_namespace": "default",

24 "vcpu": 2,

25 "storage": 200,

26 "virtualization": "container",

27 "code": "docker.io/library/busybox",

28 "ns_ref": "app_b"

29 }

30 ]

31 }

32 ],

33 "net_services": [

34 {

35 "nsID": ""

36 "ns_name": "Ping demo"

37 "ns_vendor": "D6G"

38 "siteID": "d6g-001"

39 "forwarding_graphs": [

40 {

41 "graph_name": "test1",

42 "e2e_delay_budget": "5ms",

43 "links": [

Muhammad Mansour, Tomás E. Agata page 9 of 17



Report
Research Project 2

44 {

45 "id": "to_dst",

46 "connection_points": [

47 {"microservice_ref": "app_a:1"},

48 {"microservice_ref": "app_b:1"}

49 ]

50 },

51 {

52 "id": "to_src",

53 "connection_points": [

54 {"microservice_ref": "app_b:1"},

55 {"microservice_ref": "app_a:1"}

56 ]

57 }

58 ]

59 }

60 ]

61 }

62 ]

63 }

Listing 1: Illustrative snippet of the Deployment Descriptor used in the test
This descriptor is then processed by RO, which schedules in which of the clusters they are

going to be deployed (see Figures 3 and 4).

Figure 3: User hands over a deployment descriptor to the Root Orchestrator

Figure 4: Root Orchestrator schedules the deployment to the best cluster

Once it decides which cluster is the best, it creates a local network service descriptor (local
NSD) which is handed over to the IML component in the selected cluster. This local NSD regis-
ters the network services for the deployment.

Muhammad Mansour, Tomás E. Agata page 10 of 17



Report
Research Project 2

7.2 Cluster Orchestrator deploys microservices

Once the deployment has been scheduled and the network services have been registered with the
site’s IML, the cluster orchestrator can initiate the process of deploying the microservices (fig.
5). In order for them to register themselves with the IML, the CO has to add an annotation to
the Kubernetes deployment file to make them use IML’s CNI. Kubernetes will in turn, force the
deployment to use the CNI.

Figure 5: Cluster Orchestrator deploys microservices

7.3 IML deploys the network service

Once the required microservices have been deployed, IML will automatically start the deploy-
ment of the required VNFs in the service chain as well as the necessary connections to ensure
data-plane connectivity (fig. 6). Once this last step is done, then the network service chain has
been successfully set up.

8 Results

The results of our project are primarily qualitative, focusing on the functionality and architec-
tural benefits of the integrated orchestrator. We successfully developed a unified 6G service or-
chestrator that can deploy both application containers and network functions based on a single
high-level specification. The demonstration described above confirmed that the system operates
as expected: a network service chain is created in response to the specifications of a user, and
the automatically deployed end-to-end service works correctly with minimal manual intervention.

One key outcome is that the integration of IML with Oakestra did not break the deploy-
ment process. The orchestration of the network function occurred in parallel with the normal

Figure 6: IML deploys network services once all microservices are registered

Muhammad Mansour, Tomás E. Agata page 11 of 17



Report
Research Project 2

application scheduling, adding only a small constant overhead required for the NFRouter con-
tainer to start; this overhead is similar to the startup duration of the application containers
themselves. From the user’s perspective there is some extra waiting time as the NFRouter de-
ployment process is finished. However, these times can be almost completely removed by mod-
ifying the NFRouter deployment to dynamically introduce new rules during runtime operation.
This change would allow to deploy the NFRouter early and avoid waiting for the deployment to
finish.

Additionally, any application can be used with no changes to its own internal logic. This
allows fluid integration with previous orchestration strategies. The only overhead on their de-
ployment comes from the execution routine of the CNI. Performance-wise, this CNI must wait
for a response from the IML, and as the IML is using a REST API using HTTP, the exact de-
lay can be approximated to 3 or 4 Round-Trip-Times (RTTs) depending on the TLS version in
use [21]. However, these times can be heavily reduced by introducing a local network manager
in each node that acts as the IP addressing manager that registers the services and sets up the
interfaces asynchronously. This would essentially limit each round-trip-time to microseconds as
CNI only has to communicate locally instead of remotely.

Another added benefit from our architecture is that it scales the management plane horizon-
tally by assigning tasks to the cluster and IML agents, which avoids creating bottlenecks at the
Root Orchestrator. In a more complex scenario with many microservices and VNFs, we expect
similar behavior, where cluster orchestrators and IML agents work simultaneously under the co-
ordination of the root. This is a positive result for the scalability of the architecture, indicating
it can support the distributed structure of 6G services.

Another result is the simplification for developers. By using the extended descriptor with
NSDs, developers can specify their network requirements, and the orchestrator ensures those
requirements are met. In our test, for example, we inserted a routing function into the service
chain with less effort. Before, accomplishing the same would require manually provisioning a
router VM or container, configuring its interfaces, and updating routing tables on the applica-
tion nodes. Our orchestrator automated all those steps. This indicates improved flexibility: the
platform can support a variety of application topologies (e.g. inserting firewalls, or proxies be-
tween components) without hard-coding those in the infrastructure beforehand. The concept of
NSD proved to be useful, as it decouples the service logic from the underlying network configura-
tion, and our integration shows that this concept can extend to edge service orchestration.

The tests performed were simple, but they reflect that our orchestrator’s decisions to place
the NFRouter in software on the edge cluster were reasonable. In the future, with heavier traf-
fic or stricter SLAs, the orchestrator (via IML) could choose alternative placements (e.g. on an
FPGA card), and our architecture is ready for such extensions. In addition, the system pre-
served Oakestra’s lightweight nature: the resource overhead of running the IML agent and an
extra container was small.

9 Discussion

Our integrated orchestrator addresses various challenges and provides many insights

• Hierarchical Orchestration Effectiveness: The project demonstrates the benefits of
a hierarchical approach for scaling edge orchestration. We achieved scalability and low la-
tency in the control plane by using a Root Orchestrator to make high-level decisions and
offloading finer decisions to cluster-level orchestrators. However, one might ask: could a
centralized orchestrator with an integrated network manager do the same? The answer is
yes. However as the system grows, we run into the same scalability problems of a mono-
lithic design: The problem of orchestrating applications across multiple nodes is in essence
a hard mathematical problem [22]. When adding more nodes, it becomes increasingly hard
to schedule deployments, making this theoretical central orchestrator a bottleneck.

By introducing multiple layers of orchestrators, we heavily reduce the scope of each of the
orchestrators, thereby reducing decision complexity while also providing fault tolerance be-
cause if one cluster is isolated, it can still operate locally. Thus, for 6G services which may

Muhammad Mansour, Tomás E. Agata page 12 of 17



Report
Research Project 2

cover thousands of sites, a hierarchical control plane is not just beneficial but also neces-
sary. We saw that our prototype handled the sample architecture effectively, and we expect
the design will scale up well as the number of clusters increases.

• Integrating Network Service Orchestration: One of the key contributions of this
project is demonstrating a practical way to combine application and network service or-
chestration. We achieved this by integrating two different orchestrators: a network or-
chestrator (IML) and an application orchestrator (Oakestra’s CO), both managed by a
global orchestrator. The loose connection between these two orchestrators is an impor-
tant consideration. We intentionally kept clear boundaries between their roles: the root
orchestrator (RO) provides the network service descriptor (NSD) to IML without inter-
fering with application details. Similarly, the IML focuses only on network-related tasks
and does not manage application containers. This separation clearly defines responsibili-
ties and aligns with the DESIRE6G principle of separating “business logic” (application
concerns) from “infrastructure management” (network concerns) [2]. This separation pro-
vided two main benefits. First, it enabled us to integrate IML into Oakestra’s system with
minimal changes to its core. Second, it allowed for modularity, meaning each orchestrator
can be upgraded or modified independently. However, it also introduces coordination chal-
lenges. Both orchestrators (CO and IML) must consistently share information about the
deployment state. In our prototype, we used a basic messaging system where the worker
node CNI informs IML about applications and IML replies with the required network in-
formation. For real-world applications, a more robust synchronization mechanism, such as
a shared database or an event streaming platform such as Apache Kafka would likely be
necessary.

• Network Service Descriptors (NSDs): Using NSDs enhanced the flexibility of our
orchestrator, enabling intent-based networking. The user specifies what they need (e.g.
a chain connecting microservice A and B with certain QoS) and the system decides how
to implement it. Users define network requirements through NSDs, allowing the orches-
trator to automatically select and deploy Virtual Network Functions (VNFs), simplifying
the developer’s role and making the system adaptable. For example, if the descriptor had
a different topology or multiple network functions, the orchestrator would handle it with
the same process, choosing suitable VNFs and linking them. This is similar to how NFV
MANO systems operate with their own implementation of NSDs [9], but integrating it
with application deployment is novel. As of right now, there is only so much our current
NSDs can provide. However, we believe that this version should be considered more of a
prototype than production-ready. For the future, a more standardized NSD with popular
functionalities could be adopted.

To conclude, we would like to briefly mention that traditionally, applications and network
services are deployed separately (e.g. using Kubernetes for applications and NFV orchestrators
like ETSI OSM or ONAP for networks), often requiring a manual or custom integration. Our
solution merges these aspects into a unified orchestrator, creating a single interface. Although
extending Oakestra to include networking features required significant effort, its modular design
made this feasible. In this project, we showed an example of the ability to treat “network-as-
code” just like “infrastructure-as-code”: writing a deployment descriptor to describe a network
function and having the system implement it automatically. This means that application devel-
opers can start to assume the network is programmable and available on demand as part of their
application deployment workflow.

10 Limitations

In the current implementation, we only fully integrated a single type of network function (the
NFRouter). This means that if a user wanted, for example, to include a heavy-hitter detection
component as a network function in the service chain, additional development would be required.
The IML codebase would need extensions to handle this new VNF. The current approach is

Muhammad Mansour, Tomás E. Agata page 13 of 17



Report
Research Project 2

not fully generic, but future work could introduce more flexible plugins or adopt a standard
like P4 programs to define new functions. Our vision of this project is to simplify the creation
and configuration of network services so that they can be easily developed and implemented
with very few clicks to avoid many of the downsides of development that we confronted in our
first research project where we developed a heavy-hitter detection component. Additionally, the
integration between Oakestra and IML is still preliminary and the current messaging mecha-
nism with IML lacks some robustness features. For instance, the messaging between IML and
other components hasn’t been tested under failure conditions. If those messages were lost or de-
layed, new application will have to wait until the underlying network becomes reliable again or
its problems are fixed. In a production environment, we might would need to implement reliable
signaling or a handshake mechanism. Scalability represents another limitation, as the unified
orchestrator has not been evaluated at large scale. Oakestra has been shown to scale to many
clusters and services, and the IML is theoretically designed for large deployments, but when in-
tegrated, new performance questions arise. For example, how quickly can the Root Orchestrator
generate and send NSDs for 100 network functions across 50 sites at the same time. The RO
might get overloaded if it had to process extremely large descriptors or coordinate many sites.

Finally, our work was done in a lab setting with virtual machines and simulated edge condi-
tions. We did not test the orchestrator in a real 5G/6G environment (with radio base stations,
real user traffic, etc.), meaning there may be unexpected limitations when applying this orches-
trator in an operational network. Addressing all mentioned limitations is important to move
from a prototype to a production 6G orchestration platform.

11 Conclusion

In this project, we designed and implemented a Smart Orchestrator for 6G services that uni-
fies application deployment and network function orchestration in a hierarchal framework. By
adding an Infrastructure Management Layer (IML) to the Oakestra edge orchestrator’s design,
we were able to automate the deployment of network service chains in addition to traditional mi-
croservice applications. Through this integration, we addressed the complexities of multi-site ser-
vice management by splitting responsibilities: the Root Orchestrator performs global placement
and splits the deployment into application and network components. The Cluster Orchestrators
start application containers and the IML agents dynamically configure the interconnecting net-
work functions. Our orchestrator interprets high-level Network Service Descriptors, which means
that developers can specify the networking requirements for their services, and the system will
provide those requirements.

The successful proof-of-concept of an end-to-end deployment, where two microservices and
an NFRouter were created and connected automatically, validates our approach. It shows that it
is feasible to achieve zero-touch service orchestration where both compute and network resources
are managed under a common framework, a capability expected to be crucial in 6G networks.
The hierarchical design ensures scalability to many edge sites, and the modular integration of
IML shows how diverse (from CPUs to SmartNICs) can be abstracted for use by service develop-
ers.

Our work bridges a gap between cloud orchestration and telecom network management.
This is an important step toward the 6G vision of smart, distributed networks that can be pro-
grammatically controlled to meet strict performance and reliability requirements. We built a
prototype orchestrator and we demonstrated the features (hierarchical scheduling, NSD-driven
NF deployment) on a small scale, which represents the groundwork for handling more complex
deployments in the future. The positive outcomes answer the research questions positively: Yes,
we can design a hierarchical distributed orchestrator for multi-site 6G services, and yes, we can
integrate network service orchestration into it in a way that uses NSDs to enhance flexibility
without interrupting normal application deployment.

Muhammad Mansour, Tomás E. Agata page 14 of 17



Report
Research Project 2

12 Future Work

As previously discussed, there are multiple ways this orchestrator can be improved to migrate
from the current proof-of-concept implementation to a fully-fledged production solution.

• Dynamic rule allocation for VNFs: By allowing dynamic rule allocations in each VNF,
the IML is capable of pre-deploying to avoid waiting. Once the applications are deployed,
then they can be reassigned some control-plane rules to allow for dynamic reconfiguration.

• Support for additional network functions: A clear next step is to expand the range
of VNFs supported by the orchestrator. In particular, we plan to add the heavy-hitter de-
tection mechanisms studied in our previous project (RP1). In this project, the architecture
was built and a future work would be to develop a network function (e.g., a P4 program on
a virtual switch or a SmartNIC) that can detect large “elephant” flows in real time, and to
integrate it so the orchestrator can deploy it on demand. For example, if an application’s
traffic pattern indicates that certain flows are consuming a large amount of bandwidth, the
orchestrator (through IML) could insert a heavy-hitter monitor NF and possibly a load
optimizer function to redistribute or offload those flows to a different path or hardware ac-
celerator.

• Ability to create own network functions: So far, the number of available VNFs that
the IML can deploy are limited. By designing a way to define and configure any network
function, the user can leverage full flexibility to allow any range of network service chains.

• Local network manager in each node: The current implementation of IML’s CNI re-
quires that this component directly communicates with the IML to obtain the required in-
terface configurations before starting the application. As mentioned in the result section,
this can generate around 3 to 4 RTTs of latency when creating a new application instance.
However, by implementing a local network manager in each node, this latency can be heav-
ily reduced as the CNI only needs to communicate with another process in the same node,
which speeds up the configuration process.

• Rewrite NFRouter to leverage eBPF acceleration: Our current solution utilizes
software containerization as the deployment method for the NFRouter. This layer of vir-
tualization introduces a minor amount of latency to the network service chains. A better,
more refined solution could come from rewriting the NFRouter in eBPF to leverage from
both kernel-level speed and also hardware acceleration[23]. This change could be able to
reduce the latency considerably while increasing the overall throughput significantly.

• Multi-Cluster Deployments: Our demonstration was within a single cluster. In future
work, we aim to test the orchestrator across multiple clusters. This will involve scenar-
ios where microservice A is in cluster X and microservice B is in cluster Y, and the NSD
might require a chain spanning both. This will be an important step to show that our or-
chestrator can manage global networks, not just local ones.

References

[1] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and J. Ott. “Oakestra
white paper: An orchestrator for edge computing.” arXiv: 2207.01577 [cs.DC]. (2022).

[2] G. Pongrácz and C. Papagianni, “D2.2: DESIRE6G Functional Architecture Definition,”
Zenodo, Tech. Rep., 2024, Deliverable for the DESIRE6G project. doi: 10.5281/zenodo.
12784579. [Online]. Available: https://doi.org/10.5281/zenodo.12784579.

[3] T. Tao, Y. Wang, D. Li, Y. Wan, P. Baracca, and A. Wang, “6g hyper reliable and low-
latency communication – requirement analysis and proof of concept,” in Proceedings of the
2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, 2023. [On-
line]. Available: https://www.ieeevtc.org/vtc2023fall/DATA/2023002457.pdf.

Muhammad Mansour, Tomás E. Agata page 15 of 17

https://arxiv.org/abs/2207.01577
https://doi.org/10.5281/zenodo.12784579
https://doi.org/10.5281/zenodo.12784579
https://doi.org/10.5281/zenodo.12784579
https://www.ieeevtc.org/vtc2023fall/DATA/2023002457.pdf


Report
Research Project 2

[4] Ericsson. “6g - follow the journey to the next generation networks.” Accessed: 2025-05-29.
(), [Online]. Available: https://www.ericsson.com/en/6g.

[5] S. R. “Horizontal scaling vs vertical scaling: Choosing your strategy.” Accessed: 2025-05-
29. (Feb. 2024), [Online]. Available: https : / / www . digitalocean . com / resources /
articles/horizontal-scaling-vs-vertical-scaling.

[6] A. Gurtov, “Dynamic service function chaining orchestration in a multi-domain: A heuris-
tic approach based on srv6,” Sensors, vol. 21, no. 19, p. 6563, 2021. doi: 10.3390/s21196563.
[Online]. Available: https://www.mdpi.com/1424-8220/21/19/6563.

[7] B. Amento, B. Balasubramanian, R. J. Hall, K. Joshi, G. Jung, and K. H. Purdy, “Fo-
cusstack: Orchestrating edge clouds using location-based focus of attention,” eng, in 2016
IEEE/ACM Symposium on Edge Computing (SEC), IEEE, 2016, pp. 179–191, isbn: 150903322X.

[8] “Paradrop: Enabling lightweight multi-tenancy at the network’s extreme edge,” eng, in
2016 IEEE/ACM Symposium on Edge Computing (SEC), IEEE, 2016, pp. 1–13, isbn:
150903322X.

[9] A. Alwakeel, A. Alnaim, and E. Fernández, “A pattern for nfv management and orchestra-
tion (mano),” Mar. 2019.

[10] K. Kaur, V. Mangat, and K. Saluja, “A review on virtualized infrastructure managers with
management and orchestration features in nfv architecture,” Computer Networks, vol. 217,
p. 109 281, Aug. 2022. doi: 10.1016/j.comnet.2022.109281.

[11] G. M. Yilma, F. Yousaf, V. Sciancalepore, and X. Costa-Pérez, “Benchmarking open-source
nfv mano systems: Osm and onap,” Mar. 2020. doi: 10.48550/arXiv.1904.10697.

[12] S. Dräxler, M. Peuster, H. Karl, et al., “Sonata: Service programming and orchestration for
virtualized software networks,” May 2016. doi: 10.48550/arXiv.1605.05850.

[13] K. Antevski, C. Bernardos, L. Cominardi, A. de la Oliva, and A. Mourad, “On the inte-
gration of nfv and mec technologies: Architecture analysis and benefits for edge robotics,”
Computer Networks, vol. 175, p. 107 274, Apr. 2020. doi: 10.1016/j.comnet.2020.
107274.

[14] B. Sayadi, C.-Y. Chang, C. Tranoris, et al., “Network Applications: Opening up 5G and
beyond networks,” Zenodo, Tech. Rep., 2022. doi: 10.5281/zenodo.7123919. [Online].
Available: https://doi.org/10.5281/zenodo.7123919.

[15] OpenStack Foundation. “Network service descriptor management — tacker cli (wallaby).”
Accessed June 23, 2025. (Aug. 2020), [Online]. Available: https://docs.openstack.org/
tacker/wallaby/cli/cli-legacy-nsd.html.

[16] Oakestra Documentation, High-Level Setup Overview (Architecture Diagram), https://
www.oakestra.io/docs/getting-started/oak-environment/high-level-setup-

overview/, Accessed July 2025, 2025.

[17] g. marco gramaglia, B. Ömer, X. Li, et al., “Towards 6g architecture: Key concepts, chal-
lenges, and building blocks,” May 2025. doi: 10.5281/zenodo.15001377.

[18] T. Agata, Oakestra: A container orchestrator for embedded edge systems, https://github.
com/tomasagata/oakestra, Accessed: 2025-07-04, 2024.

[19] T. Agata, Plugin-kubernetes, https://github.com/tomasagata/plugin-kubernetes,
Accessed: 2025-07-04, 2024.

[20] DESIRE6G Consortium, Iml-lnfvo, https://github.com/DESIRE6G/IML-LNFVO, Accessed:
2025-07-04, 2024.

[21] A. Name, “Performance and security evaluation of tls, dtls and quic security,” M.S. thesis,
Politecnico di Torino, 2022.

[22] P. Liu and J. Guitart, “Multi-dimensional resource placement algorithm based on parallel
optimization for cloud environments,” Future Generation Computer Systems, 2025, Inte-
grates island-model genetic algorithms to address the NP-hard resource placement prob-
lem. doi: 10.1016/j.future.2025.01.023.

Muhammad Mansour, Tomás E. Agata page 16 of 17

https://www.ericsson.com/en/6g
https://www.digitalocean.com/resources/articles/horizontal-scaling-vs-vertical-scaling
https://www.digitalocean.com/resources/articles/horizontal-scaling-vs-vertical-scaling
https://doi.org/10.3390/s21196563
https://www.mdpi.com/1424-8220/21/19/6563
https://doi.org/10.1016/j.comnet.2022.109281
https://doi.org/10.48550/arXiv.1904.10697
https://doi.org/10.48550/arXiv.1605.05850
https://doi.org/10.1016/j.comnet.2020.107274
https://doi.org/10.1016/j.comnet.2020.107274
https://doi.org/10.5281/zenodo.7123919
https://doi.org/10.5281/zenodo.7123919
https://docs.openstack.org/tacker/wallaby/cli/cli-legacy-nsd.html
https://docs.openstack.org/tacker/wallaby/cli/cli-legacy-nsd.html
https://www.oakestra.io/docs/getting-started/oak-environment/high-level-setup-overview/
https://www.oakestra.io/docs/getting-started/oak-environment/high-level-setup-overview/
https://www.oakestra.io/docs/getting-started/oak-environment/high-level-setup-overview/
https://doi.org/10.5281/zenodo.15001377
https://github.com/tomasagata/oakestra
https://github.com/tomasagata/oakestra
https://github.com/tomasagata/plugin-kubernetes
https://github.com/DESIRE6G/IML-LNFVO
https://doi.org/10.1016/j.future.2025.01.023


Report
Research Project 2

[23] eBPF Community, Ebpf – introduction, tutorials & community resources, https://ebpf.
io/, Accessed: 2025-07-06, 2025.

Muhammad Mansour, Tomás E. Agata page 17 of 17

https://ebpf.io/
https://ebpf.io/

	Introduction
	Connection to Previous Work
	Research questions
	Related Work
	Methodology
	Design
	Oakestra
	Infrastructure Management Layer
	Unified Architecture

	Deployment Demonstration
	User submits application specification to Root Orchestrator
	Cluster Orchestrator deploys microservices
	IML deploys the network service

	Results
	Discussion
	Limitations
	Conclusion
	Future Work

